
Löb’s Theorem
A functional pearl of dependently typed quining

Anonymous

Keywords Agda, Löb’s theorem, quine, self-reference, type the-
ory

Abstract
Löb’s theorem states that to prove that a proposition is provable,
it is sufficient to prove the proposition under the assumption that
it is provable. The Curry-Howard isomorphism identifies formal
proofs with abstract syntax trees of programs; Löb’s theorem thus
implies, for total languages which validate it, that self-interpreters
are impossible. We formalize a few variations of Löb’s theorem in
Agda using an inductive-inductive encoding of terms indexed over
types. We verify the consistency of our formalizations relative to
Agda by giving them semantics via interpretation functions.

1. Introduction
If P’s answer is ‘Bad!’, Q will suddenly stop.
But otherwise, Q will go back to the top,
and start off again, looping endlessly back,
till the universe dies and turns frozen and black.

Excerpt from Scooping the Loop Snooper: A proof that the
Halting Problem is undecidable (Pullum 2000)

Löb’s theorem has a variety of applications, from providing an
induction rule for program semantics involving a “later” opera-
tor (Appel et al. 2007), to proving incompleteness of a logical the-
ory as a trivial corollary, from acting as a no-go theorem for a large
class of self-interpreters, to allowing robust cooperation in the Pris-
oner’s Dilemma with Source Code (Barasz et al. 2014), and even
in one case curing social anxiety (Yudkowsky 2014).

In this paper, after introducing the content of Löb’s theorem,
we will present in Agda three formalizations of type-theoretic lan-
guages and prove Löb’s theorem in and about these languages:
one that shows the theorem is admissible as an axiom in a wide
range of situations, one which proves Löb’s theorem by assuming
as an axiom the existence of quines (programs which output their
own source code), and one which constructs the proof under even
weaker assumptions; see section 5 for details.

“What is Löb’s theorem, this versatile tool with wondrous ap-
plications?” you may ask.

Consider the sentence “if this sentence is true, then you, dear
reader, are the most awesome person in the world.” Suppose that

[Copyright notice will appear here once ’preprint’ option is removed.]

this sentence is true. Then you are the most awesome person in the
world. Since this is exactly what the sentence asserts, the sentence
is true, and you are the most awesome person in the world. For
those more comfortable with symbolic logic, we can let X be the
statement “you, dear reader, are the most awesome person in the
world”, and we can let A be the statement “if this sentence is true,
then X”. Since we have that A and A \rightarrow X are the same, if we
assume A, we are also assuming A \rightarrow X , and hence we have X .
Thus since assuming A yields X , we have that A\rightarrow X . What went
wrong?1

It can be made quite clear that something is wrong; the more
common form of this sentence is used to prove the existence of
Santa Claus to logical children: considering the sentence “if this
sentence is true, then Santa Claus exists”, we can prove that Santa
Claus exists. By the same logic, though, we can prove that Santa
Claus does not exist by considering the sentence “if this sentence
is true, then Santa Claus does not exist.” Whether you consider it
absurd that Santa Claus exist, or absurd that Santa Claus not exist,
surely you will consider it absurd that Santa Claus both exist and
not exist. This is known as Curry’s Paradox.

The problem is that the phrase “this sentence is true” is not
a valid mathematical assertion; no language can encode a truth
predicate for itself (Tarski 1936). However, some languages can
encode assertions about provability (Gödel 1931). In section 2, we
will dig into the difference between truth predicates and provability
predicates from a computational perspective. We will present an
argument for the indefinability of truth and for the definability of
provability, which we hope will prove enlightening when we get to
the formalization of Löb’s theorem itself.

Now consider the sentence “if this sentence is provable, then
Santa Claus exists.” To prove that that sentence is true, we suppose
that it is provable. We must now show that Santa Claus exists. If
provability implies truth, then the sentence is true, and thus Santa
Claus exists. Hence, if we can assume that provability implies truth,
then we can prove that the sentence is true. This, in a nutshell,
is Löb’s theorem: to prove X , it suffices to prove that X is true
whenever X is provable. If we let \square X denote the assertion “X is
provable,” then, symbolically, Löb’s theorem becomes:

\square (\square X \rightarrow X)\rightarrow \square X.

Note that Gödel’s incompleteness theorem follows trivially from
Löb’s theorem: by instantiating X with a contradiction, we can see
that it’s impossible for provability to imply truth for propositions
which are not already true.

Note that Löb’s theorem is specific to the formal system and to
the notion of probability used. In particular, the formal system must
be powerful enough to talk about which of its sentences are prov-
able; examples of such formal systems include Peano Arithmetic,

1 Those unfamiliar with conditionals should note that the “if . . . then . . . ”
we use here is the logical “if”, where “if false then X” is always true, and
not the counter-factual “if”.

1 2016/3/19

Logic Programming Set Theory
Proposition Type Set of Proofs

Proof Program Element
Implication (\rightarrow) Function (\rightarrow) Function
Conjunction (\wedge) Pairing (,) Cartesian Product (\times)
Disjunction (\vee) Sum (+) Disjoint Union (\sqcup)

Gödel codes ASTs —
\square X\rightarrow X Interpreters —

(In)completeness Halting problem —

Table 1. The Curry-Howard Isomorphism between mathematical
logic and functional programming

Martin–Löf Type Theory, and Gödel-Löb Modal Logic. In this pa-
per, we fix formal systems by formalizing them as object languages
in Agda, and we fix formalizations of provability in those systems
by treating each formalized language as the metalanguage for some
formalization of itself.

2. Quines and the Curry–Howard Isomorphism
Let us now return to the question we posed above: what went wrong
with our original sentence? The answer is that self-reference with
truth is impossible, and the clearest way we know to argue for this is
via the Curry–Howard Isomorphism; in a particular technical sense,
the problem is that self-reference with truth fails to terminate.

The Curry–Howard Isomorphism establishes an equivalence be-
tween types and propositions, between (well-typed, terminating,
functional) programs and proofs. See Table 1 for some examples.
Now we ask: what corresponds to a formalization of provability? A
proof of P is a terminating functional program which is well-typed
at the type corresponding to P . To assert that P is provable is to
assert that the type corresponding to P is inhabited. Thus an encod-
ing of a proof is an encoding of a program. Although mathemati-
cians typically use Gödel codes to encode propositions and proofs,
a more natural choice of encoding programs is abstract syntax trees
(ASTs). In particular, a valid syntactic proof of a given (syntac-
tic) proposition corresponds to a well-typed syntax tree for an in-
habitant of the corresponding syntactic type. Other formalizations
of self-representation of programs in programs abound (Church
1940; Davies and Pfenning 2001; Geuvers 2014; Kiselyov 2012;
Mogensen 2001; Pfenning and Lee 1991; Scott 1963; Altenkirch
and Kaposi 2016; Berarducci and Böhm 1985; Brown and Palsberg
2016).

Note well that the type (\square X \rightarrow X) is the type of functions
that take syntax trees and evaluate them; it is the type of an inter-
preter or an unquoter.

What is the computational equivalent of the sentence “If this
sentence is provable, then X”? It will be something of the form
“??? \rightarrow X”. As a warm-up, let’s look at a Python program that
outputs its own source code.

There are three genuinely distinct solutions, the first of which is
degenerate, and the second of which is cheeky. These solutions are:

• The empty program, which outputs nothing.
• The code print(open(__file__, 'r').read()), which

relies on the Python interpreter to get the source code of the
program.

• A program with a “template” which contains a copy of the
source code of all of the program except for the template it-
self, leaving a hole where the template should be. The pro-
gram then substitutes a quoted copy of the template into the
hole in the template itself. In code, we can use Python’s

repr to get a quoted copy of the template, and we do sub-
stitution using Python’s replacement syntax: for example,
("foo %s bar" % "baz") becomes "foo baz bar". Our
third solution, in code, is thus:

T = 'T = %s\nprint(T %% repr(T))'
print(T % repr(T))

The functional equivalent, which does not use assignment, and
which we will be using later on in this paper, is:

(lambda T: T % repr(T))
('(lambda T: T %% repr(T))\n (%s)')

We can use this technique, known as quining (Hofstadter 1979;
Kleene 1952), to describe self-referential programs.

Suppose Python had a function \square that took a quoted repre-
sentation of a Martin–Löf type (as a Python string), and returned
a Python object representing the Martin–Löf type of ASTs of
Martin–Löf programs inhabiting that type. Now consider the pro-
gram

\varphi = (lambda T: \square (T % repr(T)))
('(lambda T: \square (T %% repr(T)))\n (%s)')

The variable \varphi evaluates to the type of ASTs of programs
inhabiting the type corresponding to T % repr(T), where T
is '(lambda T: \square (T %% repr(T)))\n (%s)'. What Martin–
Löf type does this string, T % repr(T), represent? It represents
\square (T % repr(T)), of course. Hence \varphi is the type of syntax trees
of programs that produce proofs of \varphi —-in other words, \varphi is a
Henkin sentence.

Taking it one step further, assume Python has a function
Π(a, b) which takes two Python representations of Martin–Löf
types and produces the Martin–Löf type (a \rightarrow b) of functions
from a to b. If we also assume that these functions exist in the
term language of string representations of Martin–Löf types, we
can consider the function

def Lob(X):
T = '(lambda T: Π(\square (T %% repr(T)), X))(%s)'
\varphi = Π(\square (T % repr(T)), X)
return \varphi

What does Lob(X) return? It returns the type \varphi of abstract syn-
tax trees of programs producing proofs that “if \varphi is provable, then
X.” Concretely, Lob(\bot) returns the type of programs which prove
Martin–Löf type theory consistent, Lob(SantaClaus) returns the
variant of the Santa Claus sentence that says “if this sentence is
provable, then Santa Claus exists.”

Let us now try producing the true Santa Claus sentence, the one
that says “If this sentence is true, Santa Claus exists.” We need
a function Eval which takes a string representing a Martin–Löf
program, and evaluates it to produce a term. Consider the Python
program

def Tarski(X):
T = '(lambda T: Π(Eval(T %% repr(T)), X)(%s)'
\varphi = Π(Eval(T % repr(T)), X)
return \varphi

Running Eval(T % repr(T)) tries to produce a term that is
the type of functions from Eval(T % repr(T)) to X. Note that
\varphi is itself the type of functions from Eval(T % repr(T)) to X.
If Eval(T % repr(T)) could produce a term of type \varphi , then \varphi
would evaluate to the type \varphi \rightarrow X, giving us a bona fide Santa
Claus sentence. However, Eval(T % repr(T)) attempts to pro-
duce the type of functions from Eval(T % repr(T)) to X by
evaluating Eval(T % repr(T)). This throws the function Tarski

2 2016/3/19

into an infinite loop which never terminates. (Indeed, choosing
X = \bot it’s trivial to show that there’s no way to write Eval such
that Tarski halts, unless Martin–Löf type theory is inconsistent.)

3. Abstract Syntax Trees for Dependent Type
Theory

The idea of formalizing a type of syntax trees which only permits
well-typed programs is common in the literature (McBride 2010;
Chapman 2009; Danielsson 2007). For example, here is a very
simple (and incomplete) formalization with dependent function
types (\Pi), a unit type (\top), an empty type (\bot), and functions (\lambda).

We will use some standard data type declarations, which are
provided for completeness in Appendix A.

mutual
in�xl 2 _ \triangleleft _

data Context : Set where
\varepsilon : Context
_ \triangleleft _ : (Γ : Context)\rightarrow Type Γ\rightarrow Context

data Type : Context\rightarrow Set where
`\top ' : \forall {Γ}\rightarrow Type Γ
`\bot ' : \forall {Γ}\rightarrow Type Γ
`Π' : \forall {Γ}
\rightarrow (A : Type Γ)\rightarrow Type (Γ \triangleleft A)\rightarrow Type Γ

data Term : {Γ : Context}\rightarrow Type Γ\rightarrow Set where
`tt' : \forall {Γ}\rightarrow Term {Γ} `\top '
`\lambda ' : \forall {Γ A B}\rightarrow Term B\rightarrow Term {Γ} (`Π' A B)

An easy way to check consistency of a syntactic theory which is
weaker than the theory of the ambient proof assistant is to define an
interpretation function, also commonly known as an unquoter, or a
denotation function, from the syntax into the universe of types. This
function gives a semantic model to the syntax. Here is an example
of such a function:

mutual
J_Kc : Context\rightarrow Set
J \varepsilon Kc = \top
J Γ \triangleleft T Kc = Σ J Γ Kc J T KT

J_KT : \forall {Γ}
\rightarrow Type Γ\rightarrow J Γ Kc\rightarrow Set

J `\top ' KT Γ\Downarrow = \top
J `\bot ' KT Γ\Downarrow = \bot
J `Π' A B KT Γ\Downarrow = (x : J A KT Γ\Downarrow)\rightarrow J B KT (Γ\Downarrow , x)

J_Kt : \forall {Γ T}
\rightarrow Term {Γ} T\rightarrow (Γ\Downarrow : J Γ Kc)\rightarrow J T KT Γ\Downarrow

J `tt' Kt Γ\Downarrow = tt
J `\lambda ' f Kt Γ\Downarrow x = J f Kt (Γ\Downarrow , x)

Note that this interpretation function has an essential property
that we will call locality: the interpretation of any given construc-
tor does not require doing case analysis on any of its arguments.
By contrast, one could imagine an interpretation function that in-
terpreted function types differently depending on their domain and
codomain; for example, one might interpret (`\bot ' `\rightarrow ' A) as \top ,
or one might interpret an equality type differently at each type, as
in Observational Type Theory (Altenkirch et al. 2007).

4. This Paper
In this paper, we make extensive use of this trick for validating
models. In section 6, we formalize the simplest syntax that supports

Löb’s theorem and prove it sound relative to Agda in 12 lines
of code; the understanding is that this syntax could be extended
to support basically anything you might want. We then present
in section 7 an extended version of this solution, which supports
enough operations that we can prove our syntax sound (consistent),
incomplete, and nonempty. In a hundred lines of code, we prove
Löb’s theorem in section 8 under the assumption that we are given
a quine; this is basically the well-typed functional version of the
program that uses open(__file__, 'r').read(). After taking
a digression for an application of Löb’s theorem to the prisoner’s
dilemma in section 9, we sketch in section 10 our implementation
of Löb’s theorem (code in the supplemental material) based on only
the assumption that we can add a level of quotation to our syntax
tree; this is the equivalent of letting the compiler implement repr,
rather than implementing it ourselves. We close in section 11 with
some discussion about avenues for removing the hard-coded repr.

5. Prior Work
There exist a number of implementations or formalizations of vari-
ous flavors of Löb’s theorem in the literature. Appel et al. use Löb’s
theorem as an induction rule for program logics in Coq (Appel et al.
2007). Piponi formalizes a rule with the same shape as Löb’s the-
orem in Haskell, and uses it for, among other things, spreadsheet
evaluation (Piponi 2006). Simmons and Toninho formalize a con-
structive provability logic in Agda, and prove Löb’s theorem within
that logic (Simmons and Toninho 2012).

Gödel’s incompleteness theorems, easy corollaries to Löb’s the-
orem, have been formally verified numerous times (Shankar 1986,
1997; O’Connor 2005; Paulson 2015).

To our knowledge, our twelve line proof is the shortest self-
contained formally verified proof of the admissibility of Löb’s the-
orem to date. We are not aware of other formally verified proofs of
Löb’s theorem which interpret the modal \square operator as an induc-
tively defined type of syntax trees of proofs of a given theorem, as
we do in this formalization, though presumably the modal \square op-
erator Simmons and Toninho could be interpreted as such syntax
trees. Finally, we are not aware of other work which uses the trick
of talking about a local interpretation function (as described at the
end of section 3) to talk about consistent extensions to classes of
encodings of type theory.

6. Trivial Encoding
We begin with a language that supports almost nothing other than
Löb’s theorem. We use \square T to denote the type of Terms of whose
syntactic type is T. We use `\square ' T to denote the syntactic type
corresponding to the type of (syntactic) terms whose syntactic type
is T. For example, the type of a repr which operated on syntax
trees would be \square T \rightarrow \square (`\square ' T).

data Type : Set where
`\rightarrow ' : Type\rightarrow Type\rightarrow Type
`\square ' : Type\rightarrow Type

data \square : Type\rightarrow Set where
Löb : \forall {X}\rightarrow \square (`\square ' X `\rightarrow ' X)\rightarrow \square X

The only term supported by our term language is Löb’s theorem.
We can prove this language consistent relative to Agda with an
interpreter:

J_KT : Type\rightarrow Set

J A `\rightarrow ' B KT = J A KT\rightarrow J B KT

J `\square ' T KT = \square T

J_Kt : \forall {T : Type}\rightarrow \square T\rightarrow J T KT

J Löb \square ‘X’\rightarrow X Kt = J \square ‘X’\rightarrow X Kt (Löb \square ‘X’\rightarrow X)

3 2016/3/19

To interpret Löb’s theorem applied to the syntax for a compiler f
(\square `X'\rightarrow X in the code above), we interpret f , and then apply this
interpretation to the constructor Löb applied to f .

Finally, we tie it all together:
löb : \forall {‘X’}\rightarrow \square (`\square ' ‘X’ `\rightarrow ' ‘X’)\rightarrow J ‘X’ KT

löb f = J Löb f Kt

This code is deceptively short, with all of the interesting work
happening in the interpretation of Löb.

What have we actually proven, here? It may seem as though
we’ve proven absolutely nothing, or it may seem as though we’ve
proven that Löb’s theorem always holds. Neither of these is the
case. The latter is ruled out, for example, by the existence of an
self-interpreter for F\omega (Brown and Palsberg 2016).2

We have proven the following. Suppose you have a formaliza-
tion of type theory which has a syntax for types, and a syntax for
terms indexed over those types. If there is a “local explanation” for
the system being sound, i.e., an interpretation function where each
rule does not need to know about the full list of constructors, then
it is consistent to add a constructor for Löb’s theorem to your syn-
tax. This means that it is impossible to contradict Löb’s theorem
no matter what (consistent) constructors you add. We will see in
the next section how this gives incompleteness, and discuss in later
sections how to prove Löb’s theorem, rather than simply proving
that it is consistent to assume.

7. Encoding with Soundness, Incompleteness,
and Non-Emptiness

By augmenting our representation with top (`\top ') and bottom
(`\bot ') types, and a unique inhabitant of `\top ', we can prove sound-
ness, incompleteness, and non-emptiness.

data Type : Set where
`\rightarrow ' : Type\rightarrow Type\rightarrow Type
`\square ' : Type\rightarrow Type
`\top ' : Type
`\bot ' : Type

�� "\square " is sometimes written as "Term"
data \square : Type\rightarrow Set where

Löb : \forall {X}\rightarrow \square (`\square ' X `\rightarrow ' X)\rightarrow \square X
`tt' : \square `\top '

J_KT : Type\rightarrow Set

J A `\rightarrow ' B KT = J A KT\rightarrow J B KT

J `\square ' T KT = \square T
J `\top ' KT = \top
J `\bot ' KT = \bot

J_Kt : \forall {T : Type}\rightarrow \square T\rightarrow J T KT

J Löb \square ‘X’\rightarrow X Kt = J \square ‘X’\rightarrow X Kt (Löb \square ‘X’\rightarrow X)
J `tt' Kt = tt

`\neg '_ : Type\rightarrow Type
`\neg ' T = T `\rightarrow ' `\bot '

2 One may wonder how exactly the self-interpreter for F\omega does not contra-
dict this theorem. In private conversations with Matt Brown, we found that
the F\omega self-interpreter does not have a separate syntax for types, instead
indexing its terms over types in the metalanguage. This means that the type
of Löb’s theorem becomes either \square (\square X \rightarrow X) \rightarrow \square X, which is not
strictly positive, or \square (X \rightarrow X) \rightarrow \square X, which, on interpretation, must
be filled with a general fixpoint operator. Such an operator is well-known to
be inconsistent.

löb : \forall {‘X’}\rightarrow \square (`\square ' ‘X’ `\rightarrow ' ‘X’)\rightarrow J ‘X’ KT

löb f = J Löb f Kt

�� There is no syntactic proof of absurdity
soundness : \neg \square `\bot '
soundness x = J x Kt

�� but it would be absurd to have a syntactic
�� proof of that fact
incompleteness : \neg \square (`\neg ' (`\square ' `\bot '))
incompleteness = löb

�� However, there are syntactic proofs of some
�� things (namely \top)
non-emptiness : \square `\top '
non-emptiness = `tt'

�� There are no syntactic interpreters, things
�� which, at any type, evaluate code at that
�� type to produce its result.
no-interpreters : \neg (\forall {‘X’}\rightarrow \square (`\square ' ‘X’ `\rightarrow ' ‘X’))
no-interpreters interp = löb (interp {`\bot '})

What is this incompleteness theorem? Gödel’s incompleteness
theorem is typically interpreted as “there exist true but unprovable
statements.” In intuitionistic logic, this is hardly surprising. A more
accurate rendition of the theorem in Agda might be “there exist true
but inadmissible statements,” i.e., there are statements which are
provable meta-theoretically, but which lead to (meta-theoretically–
provable) inconsistency if assumed at the object level.

This may seem a bit esoteric, so let’s back up a bit, and make
it more concrete. Let’s begin by banishing “truth”. Sometimes it is
useful to formalize a notion of provability. For example, you might
want to show neither assuming T nor assuming \neg T yields a proof
of contradiction. You cannot phrase this is \neg T \wedge \neg \neg T , for that is
absurd. Instead, you want to say something like (\neg \square T)\wedge \neg \square (\neg T),
i.e., it would be absurd to have a proof object of either T or of \neg T .
After a while, you might find that meta-programming in this formal
syntax is nice, and you might want it to be able to formalize every
proof, so that you can do all of your solving reflectively. If you’re
like us, you might even want to reason about the reflective tactics
themselves in a reflective manner; you’d want to be able to add
levels of quotation to quoted things to talk about such tactics.

The incompleteness theorem, then, is this: your reflective sys-
tem, no matter how powerful, cannot formalize every proof. For
any fixed language of syntactic proofs which is powerful enough
to represent itself, there will always be some valid proofs that you
cannot reflect into your syntax. In particular, you might be able to
prove that your syntax has no proofs of\bot (by interpreting any such
proof). But you’ll be unable to quote that proof. This is what the
incompleteness theorem stated above says. Incompleteness, funda-
mentally, is a result about the limitations of formalizing provability.

8. Encoding with Quines
We now weaken our assumptions further. Rather than assuming
Löb’s theorem, we instead assume only a type-level quine in our
representation. Recall that a quine is a program that outputs some
function of its own source code. A type-level quine at \phi is program
that outputs the result of evaluating the function \phi on the abstract
syntax tree of its own type. Letting Quine \phi denote the construc-
tor for a type-level quine at \phi , we have an isomorphism between
Quine \phi and \phi \ulcorner Quine \phi \urcorner T, where \ulcorner Quine \phi \urcorner T is the ab-
stract syntax tree for the source code of Quine \phi . Note that we
assume constructors for “adding a level of quotation”, turning ab-

4 2016/3/19

stract syntax trees for programs of type T into abstract syntax trees
for abstract syntax trees for programs of type T ; this corresponds
to repr.

We begin with an encoding of contexts and types, repeating
from above the constructors of ‘\rightarrow ’, ‘\square ’, ‘\top ’, and ‘\bot ’. We add to
this a constructor for quines (Quine), and a constructor for syntax
trees of types in the empty context (‘Type\varepsilon ’). Finally, rather than
proving weakening and substitution as mutually recursive defini-
tions, we take the easier but more verbose route of adding construc-
tors that allow adding and substituting extra terms in the context.
Note that ‘\square ’ is now a function of the represented language, rather
than a meta-level operator.

Note that we use the infix operator _`'_ to denote substitution.
mutual

data Context : Set where
\varepsilon : Context
_ \triangleleft _ : (Γ : Context)\rightarrow Type Γ\rightarrow Context

data Type : Context\rightarrow Set where
`\rightarrow ' : \forall {Γ}\rightarrow Type Γ\rightarrow Type Γ\rightarrow Type Γ
`\top ' : \forall {Γ}\rightarrow Type Γ
`\bot ' : \forall {Γ}\rightarrow Type Γ
`Type\varepsilon ' : \forall {Γ}\rightarrow Type Γ
`\square ' : \forall {Γ}\rightarrow Type (Γ \triangleleft `Type\varepsilon ')
Quine : Type (\varepsilon \triangleleft `Type\varepsilon ')\rightarrow Type \varepsilon
W : \forall {Γ A}
\rightarrow Type Γ\rightarrow Type (Γ \triangleleft A)

W1 : \forall {Γ A B}
\rightarrow Type (Γ \triangleleft B)\rightarrow Type (Γ \triangleleft A \triangleleft (W B))

`' : \forall {Γ A}
\rightarrow Type (Γ \triangleleft A)\rightarrow Term A\rightarrow Type Γ

In addition to ‘\lambda ’ and ‘tt’, we now have the AST-equivalents of
Python’s repr, which we denote as \ulcorner _\urcorner T for the type-level add-
quote function, and \ulcorner _\urcorner t for the term-level add-quote function. We
add constructors quine\rightarrow and quine\leftarrow that exhibit the isomor-
phism that defines our type-level quine constructor, though we elide
a constructor declaring that these are inverses, as we found it un-
necessary.

To construct the proof of Löb’s theorem, we need a few other
standard constructors, such as `VAR0', which references a term
in the context; _`'a_, which we use to denote function applica-
tion; _`\circ '_, a function composition operator; and `\ulcorner `VAR0'\urcorner t',
the variant of `VAR0' which adds an extra level of syntax-trees. We
also include a number of constructors that handle weakening and
substitution; this allows us to avoid both inductive-recursive defini-
tions of weakening and substitution, and avoid defining a judgmen-
tal equality or conversion relation.

data Term : {Γ : Context}\rightarrow Type Γ\rightarrow Set where
`\lambda ' : \forall {Γ A B}
\rightarrow Term {Γ \triangleleft A} (W B)\rightarrow Term (A `\rightarrow ' B)

`tt' : \forall {Γ}
\rightarrow Term {Γ} `\top '

\ulcorner _\urcorner T : \forall {Γ} �� type-level repr
\rightarrow Type \varepsilon
\rightarrow Term {Γ} `Type\varepsilon '

\ulcorner _\urcorner t : \forall {Γ T} �� term-level repr
\rightarrow Term {\varepsilon } T
\rightarrow Term {Γ} (`\square ' `' \ulcorner T \urcorner T)

quine\rightarrow : \forall {\phi }
\rightarrow Term {\varepsilon } (Quine \phi `\rightarrow ' \phi `' \ulcorner Quine \phi \urcorner T)

quine\leftarrow : \forall {\phi }
\rightarrow Term {\varepsilon } (\phi `' \ulcorner Quine \phi \urcorner T `\rightarrow ' Quine \phi)

�� The constructors below here are for

�� variables, weakening, and substitution
`VAR0' : \forall {Γ T}
\rightarrow Term {Γ \triangleleft T} (W T)

`'a : \forall {Γ A B}
\rightarrow Term {Γ} (A `\rightarrow ' B)
\rightarrow Term {Γ} A
\rightarrow Term {Γ} B

`\circ ' : \forall {Γ A B C}
\rightarrow Term {Γ} (B `\rightarrow ' C)
\rightarrow Term {Γ} (A `\rightarrow ' B)
\rightarrow Term {Γ} (A `\rightarrow ' C)

`\ulcorner `VAR0'\urcorner t' : \forall {T}
\rightarrow Term {\varepsilon \triangleleft `\square ' `' \ulcorner T \urcorner T}

(W (`\square ' `' \ulcorner `\square ' `' \ulcorner T \urcorner T \urcorner T))
\rightarrow SW1SV\rightarrow W : \forall {Γ T X A B} {x : Term {Γ} X}
\rightarrow Term (T `\rightarrow ' (W1 A `' `VAR0' `\rightarrow ' W B) `' x)
\rightarrow Term (T `\rightarrow ' A `' x `\rightarrow ' B)

\leftarrow SW1SV\rightarrow W : \forall {Γ T X A B} {x : Term {Γ} X}
\rightarrow Term ((W1 A `' `VAR0' `\rightarrow ' W B) `' x `\rightarrow ' T)
\rightarrow Term ((A `' x `\rightarrow ' B) `\rightarrow ' T)

w : \forall {Γ A T}\rightarrow Term A\rightarrow Term {Γ \triangleleft T} (W A)
w\rightarrow : \forall {Γ A B X}
\rightarrow Term {Γ} (A `\rightarrow ' B)
\rightarrow Term {Γ \triangleleft X} (W A `\rightarrow ' W B)

w``''a : \forall {A B T}
\rightarrow Term {\varepsilon \triangleleft T} (W (`\square ' `' \ulcorner A `\rightarrow ' B \urcorner T))
\rightarrow Term {\varepsilon \triangleleft T} (W (`\square ' `' \ulcorner A \urcorner T))
\rightarrow Term {\varepsilon \triangleleft T} (W (`\square ' `' \ulcorner B \urcorner T))

\square : Type \varepsilon \rightarrow Set _
\square = Term {\varepsilon }

To verify the soundness of our syntax, we provide a model for
it and an interpretation into that model. We call particular attention
to the interpretation of `\square ', which is just Term {\varepsilon }; to Quine \phi ,
which is the interpretation of \phi applied to Quine \phi ; and to the
interpretations of the quine isomorphism functions, which are just
the identity functions.

max-level : Level
max-level = lzero �� also works for higher levels

mutual
J_Kc : (Γ : Context)\rightarrow Set (lsuc max-level)
J \varepsilon Kc = \top
J Γ \triangleleft T Kc = Σ J Γ Kc J T KT

J_KT : \forall {Γ}
\rightarrow Type Γ\rightarrow J Γ Kc\rightarrow Set max-level

J `Type\varepsilon ' KT Γ\Downarrow = Lifted (Type \varepsilon)

J `\square ' KT Γ\Downarrow = Lifted (Term {\varepsilon } (lower (snd Γ\Downarrow)))
J Quine \phi KT Γ\Downarrow = J \phi KT (Γ\Downarrow , lift (Quine \phi))
�� The rest of the type-level interpretations
�� are the obvious ones, if a bit obscured by
�� carrying around the context.

J A `\rightarrow ' B KT Γ\Downarrow = J A KT Γ\Downarrow \rightarrow J B KT Γ\Downarrow
J `\top ' KT Γ\Downarrow = \top
J `\bot ' KT Γ\Downarrow = \bot
J W T KT Γ\Downarrow = J T KT (fst Γ\Downarrow)
J W1 T KT Γ\Downarrow = J T KT (fst (fst Γ\Downarrow) , snd Γ\Downarrow)
J T `' x KT Γ\Downarrow = J T KT (Γ\Downarrow , J x Kt Γ\Downarrow)

J_Kt : \forall {Γ T}

5 2016/3/19

\rightarrow Term {Γ} T\rightarrow (Γ\Downarrow : J Γ Kc)\rightarrow J T KT Γ\Downarrow
J \ulcorner x \urcorner T Kt Γ\Downarrow = lift x
J \ulcorner x \urcorner t Kt Γ\Downarrow = lift x
J quine\rightarrow Kt Γ\Downarrow x = x
J quine\leftarrow Kt Γ\Downarrow x = x
�� The rest of the term-level interpretations
�� are the obvious ones, if a bit obscured by
�� carrying around the context.

J `\lambda ' f Kt Γ\Downarrow x = J f Kt (Γ\Downarrow , x)
J `tt' Kt Γ\Downarrow = tt
J `VAR0' K

t Γ\Downarrow = snd Γ\Downarrow
J `\ulcorner `VAR0'\urcorner t' Kt Γ\Downarrow = lift \ulcorner lower (snd Γ\Downarrow) \urcorner t
J g `\circ ' f Kt Γ\Downarrow x = J g Kt Γ\Downarrow (J f Kt Γ\Downarrow x)
J f `'a x Kt Γ\Downarrow = J f Kt Γ\Downarrow (J x Kt Γ\Downarrow)
J\leftarrow SW1SV\rightarrow W f Kt = J f Kt

J\rightarrow SW1SV\rightarrow W f Kt = J f Kt

J w x Kt Γ\Downarrow = J x Kt (fst Γ\Downarrow)
J w\rightarrow f Kt Γ\Downarrow = J f Kt (fst Γ\Downarrow)
J f w``''a x Kt Γ\Downarrow

= lift (lower (J f Kt Γ\Downarrow) `'a lower (J x Kt Γ\Downarrow))
To prove Löb’s theorem, we must create the sentence “if this

sentence is provable, then X”, and then provide and inhabitant
of that type. We can define this sentence, which we call `H',
as the type-level quine at the function \lambda v. \square v \rightarrow ‘X’. We
can then convert back and forth between the types \square `H' and
\square `H' \rightarrow `X' with our quine isomorphism functions, and a bit
of quotation magic and function application gives us a term of
type \square `H' \rightarrow \square `X'; this corresponds to the inference of the
provability of Santa Claus’ existence from the assumption that
the sentence is provable. We compose this with the assumption
of Löb’s theorem, that \square `X' \rightarrow `X', to get a term of type
\square `H' \rightarrow `X', i.e., a term of type `H'; this is the inference that
when provability implies truth, Santa Claus exists, and hence that
the sentence is provable. Finally, we apply this to its own quota-
tion, obtaining a term of type \square `X', i.e., a proof that Santa Claus
exists.

module inner (‘X’ : Type \varepsilon)
(‘f’ : Term {\varepsilon } (`\square ' `' \ulcorner ‘X’ \urcorner T `\rightarrow ' ‘X’))

where
`H' : Type \varepsilon
`H' = Quine (W1 `\square ' `' `VAR0' `\rightarrow ' W ‘X’)

`toH' : \square ((`\square ' `' \ulcorner `H' \urcorner T `\rightarrow ' ‘X’) `\rightarrow ' `H')
`toH' =\leftarrow SW1SV\rightarrow W quine\leftarrow

`fromH' : \square (`H' `\rightarrow ' (`\square ' `' \ulcorner `H' \urcorner T `\rightarrow ' ‘X’))
`fromH' =\rightarrow SW1SV\rightarrow W quine\rightarrow

`\square `H'\rightarrow \square `X'' : \square (`\square ' `' \ulcorner `H' \urcorner T `\rightarrow ' `\square ' `' \ulcorner ‘X’ \urcorner T)
`\square `H'\rightarrow \square `X''

= `\lambda ' (w \ulcorner `fromH' \urcorner t

w``''a `VAR0'
w``''a `\ulcorner `VAR0'\urcorner t')

`h' : Term `H'
`h' = `toH' `'a (‘f’ `\circ ' `\square `H'\rightarrow \square `X'')

Löb : \square ‘X’
Löb = `fromH' `'a `h' `'a \ulcorner `h' \urcorner t

Löb : \forall {X}\rightarrow \square (`\square ' `' \ulcorner X \urcorner T `\rightarrow ' X)\rightarrow \square X
Löb {X} f = inner.Löb X f

XXXXXXXXB Says
A Says Cooperate Defect

Cooperate (1 year, 1 year) (0 years, 3 years)
Defect (3 years, 0 years) (2 years, 2 years)

Table 2. The payoff matrix for the prisoner’s dilemma; each cell
contains (the years A spends in prison, the years B spends in
prison).

J_K : Type \varepsilon \rightarrow Set _

J T K = J T KT tt

`\neg '_ : \forall {Γ}\rightarrow Type Γ\rightarrow Type Γ
`\neg ' T = T `\rightarrow ' `\bot '

löb : \forall {‘X’}\rightarrow \square (`\square ' `' \ulcorner ‘X’ \urcorner T `\rightarrow ' ‘X’)\rightarrow J ‘X’ K
löb f = J_Kt (Löb f) tt

As above, we can again prove soundness, incompleteness, and
non-emptiness.

incompleteness : \neg \square (`\neg ' (`\square ' `' \ulcorner `\bot ' \urcorner T))
incompleteness = löb

soundness : \neg \square `\bot '
soundness x = J x Kt tt

non-emptiness : Σ (Type \varepsilon) (\lambda T\rightarrow \square T)
non-emptiness = `\top ' , `tt'

9. Digression: Application of Quining to The
Prisoner’s Dilemma

In this section, we use a slightly more enriched encoding of syntax;
see Appendix B for details.

9.1 The Prisoner’s Dilemma
The Prisoner’s Dilemma is a classic problem in game theory. Two
people have been arrested as suspects in a crime and are being
held in solitary confinement, with no means of communication.
The investigators offer each of them a plea bargain: a decreased
sentence for ratting out the other person. Each suspect can then
choose to either cooperate with the other suspect by remaining
silent, or defect by ratting out the other suspect. The possible
outcomes are summarized in Table 2.

Suspect A might reason thusly: “Suppose the other suspect
cooperates with me. Then I’d get off with no prison time if I
defected, while I’d have to spend a year in prison if I cooperate.
Similarly, if the other suspect defects, then I’d get two years in
prison for defecting, and three for cooperating. In all cases, I do
better by defecting.” If suspect B reasons similarly, then both
decide to defect, and both get two years in prison, despite the
fact that both prefer the (Cooperate, Cooperate) outcome over the
(Defect, Defect) outcome!

9.2 Adding Source Code
We have the intuition that if both suspects are good at reasoning,
and both know that they’ll reason the same way, then they should
be able to mutually cooperate. One way to formalize this is to
talk about programs (rather than people) playing the prisoner’s
dilemma, and to allow each program access to its own source code
and its opponent’s source code (Barasz et al. 2014).

6 2016/3/19

We have formalized this framework in Agda: we use `Bot'
to denote the type of programs that can play in such a prisoner’s
dilemma; each one takes in source code for two `Bot's and outputs
a proposition which is true (a type which is inhabited) if and only
if it cooperates with its opponent. Said another way, the output of
each bot is a proposition describing the assertion that it cooperates
with its opponent.

open lob

�� `Bot' is defined as the fixed point of
�� `Bot'
�� \updownarrow (Term `Bot' \rightarrow Term `Bot' \rightarrow `Type')
`Bot' : \forall {Γ}\rightarrow Type Γ
`Bot' {Γ}

= Quine (W1 `Term' `' `VAR0'
`\rightarrow ' W1 `Term' `' `VAR0'
`\rightarrow ' W (`Type' Γ))

To construct an executable bot, we could do a bounded search
for proofs of this proposition; one useful method described in
(Barasz et al. 2014) is to use Kripke frames. This computation is,
however, beyond the scope of this paper.

The assertion that a bot b1 cooperates with a bot b2 is the result
of interpreting the source code for the bot, and feeding the resulting
function the source code for b1 and b2.

�� N.B. "\square " means "Term {\varepsilon }", i.e., a term in
�� the empty context
cooperates-with : \square `Bot'\rightarrow \square `Bot'\rightarrow Type \varepsilon
b1 cooperates-with b2 = lower (J b1 Kt tt (lift b1) (lift b2))

We now provide a convenience constructor for building bots,
based on the definition of quines, and present three relatively simple
bots: DefectBot, CooperateBot, and FairBot.

make-bot : \forall {Γ}
\rightarrow Term {Γ \triangleleft `\square ' `Bot' \triangleleft W (`\square ' `Bot')}

(W (W (`Type' Γ)))
\rightarrow Term {Γ} `Bot'

make-bot t
=\leftarrow SW1SV\rightarrow SW1SV\rightarrow W

quine\leftarrow `'a `\lambda ' (\rightarrow w (`\lambda ' t))

`DefectBot' : \square `Bot'
`CooperateBot' : \square `Bot'
`FairBot' : \square `Bot'

The first two bots are very simple: DefectBot never cooperates
(the assertion that DefectBot cooperates is a contradiction), while
CooperateBot always cooperates. We define these bots, and prove
that DefectBot never cooperates and CooperateBot always cooper-
ates.

`DefectBot' = make-bot (w (w \ulcorner `\bot ' \urcorner T))
`CooperateBot' = make-bot (w (w \ulcorner `\top ' \urcorner T))

DB-defects : \forall {b}
\rightarrow \neg J `DefectBot' cooperates-with b K

DB-defects {b} pf = pf

CB-cooperates : \forall {b}
\rightarrow J `CooperateBot' cooperates-with b K

CB-cooperates {b} = tt
We can do better than DefectBot, though, now that we have

source code. FairBot cooperates with you if and only if it can find a
proof that you cooperate with FairBot. By Löb’s theorem, to prove
that FairBot cooperates with itself, it suffices to prove that if there
is a proof that FairBot cooperates with itself, then FairBot does, in
fact, cooperate with itself. This is obvious, though: FairBot decides

whether or not to cooperate with itself by searching for a proof that
it does, in fact, cooperate with itself.

To define FairBot, we first define what it means for the other bot
to cooperate with some particular bot.

�� We can "evaluate" a bot to turn it into a
�� function accepting the source code of two
�� bots.
`eval-bot' : \forall {Γ}

\rightarrow Term {Γ} (`Bot'
`\rightarrow ' (`\square ' `Bot' `\rightarrow ' `\square ' `Bot' `\rightarrow ' `Type' Γ))

`eval-bot' =\rightarrow SW1SV\rightarrow SW1SV\rightarrow W quine\rightarrow

�� We can quote this, and get a function that
�� takes the source code for a bot, and
�� outputs the source code for a function that
�� takes (the source code for) that bot's
�� opponent, and returns an assertion of
�� cooperation with that opponent
``eval-bot'' : \forall {Γ}

\rightarrow Term {Γ} (`\square ' `Bot'
`\rightarrow ' `\square ' ({- other -} `\square ' `Bot' `\rightarrow ' `Type' Γ))

``eval-bot''
= `\lambda ' (w \ulcorner `eval-bot' \urcorner t

w``''a `VAR0'
w``''a `\ulcorner `VAR0'\urcorner t')

�� The assertion "our opponent cooperates with
�� a bot b" is equivalent to the evaluation of
�� our opponent, applied to b. Most of the
�� noise in this statement is manipulation of
�� weakening and substitution.
`other-cooperates-with' : \forall {Γ}

\rightarrow Term {Γ
 \triangleleft `\square ' `Bot'
 \triangleleft W (`\square ' `Bot')}
(W (W (`\square ' `Bot')) `\rightarrow ' W (W (`\square ' (`Type' Γ))))

`other-cooperates-with' {Γ}
= `eval-other''

`\circ ' w\rightarrow (w (w\rightarrow (w (`\lambda ' `\ulcorner `VAR0'\urcorner t'))))
where

`eval-other'
: Term {Γ \triangleleft `\square ' `Bot' \triangleleft W (`\square ' `Bot')}

(W (W (`\square ' (`\square ' `Bot' `\rightarrow ' `Type' Γ))))
`eval-other'

= w\rightarrow (w (w\rightarrow (w ``eval-bot''))) `'a `VAR0'

`eval-other''
: Term (W (W (`\square ' (`\square ' `Bot')))

`\rightarrow ' W (W (`\square ' (`Type' Γ))))
`eval-other''

= ww\rightarrow (w\rightarrow (w (w\rightarrow (w ``'a'))) `'a `eval-other')

�� A bot gets its own source code as the first
�� argument (of two)
`self' : \forall {Γ}

\rightarrow Term {Γ \triangleleft `\square ' `Bot' \triangleleft W (`\square ' `Bot')}
(W (W (`\square ' `Bot')))

`self' = w `VAR0'

�� A bot gets its opponent's source code as
�� the second argument (of two)
`other' : \forall {Γ}

7 2016/3/19

\rightarrow Term {Γ \triangleleft `\square ' `Bot' \triangleleft W (`\square ' `Bot')}
(W (W (`\square ' `Bot')))

`other' = `VAR0'

�� FairBot is the bot that cooperates iff its
�� opponent cooperates with it
`FairBot'

= make-bot (``\square '' (`other-cooperates-with' `'a `self'))
We leave the proof that this formalization of FairBot cooperates

with itself as an exercise for the reader. In Appendix C, we present
an alternative formalization with a simple proof that FairBot coop-
erates with itself, but with no general definition of the type of bots;
we relegate this code to an appendix so as to not confuse the reader
by introducing a different way of handling contexts and weakening
in the middle of this paper.

10. Encoding with an Add-Quote Function
Now we return to our proving of Löb’s theorem. Included in the
artifact for this paper3 is code that replaces the Quine constructor
with simpler constructors. Because the lack of \beta -reduction in the
syntax clouds the main points and makes the code rather verbose,
we do not include the code in the paper, and instead describe the
most interesting and central points.

Recall our Python quine from Table 2:

(lambda T: Π(\square (T % repr(T)), X))
('(lambda T: Π(\square (T %% repr(T)), X))\n (%s)')

To translate this into Agda, we need to give a type to T. Clearly,
T needs to be of type Type ??? for some context ???. Since we
need to be able to substitute something into that context, we must
have T : Type (Γ \triangleleft ???), i.e., T must be a syntax tree for a
type, with a hole in it.

What’s the shape of the thing being substituted? Well, it’s a
syntax tree for a type with a hole in it. What shape does that hole
have? The shape is that of a syntax tree with a hole in it. . . Uh-oh.
Our quine’s type, naïvely, is infinite!

We know of two ways to work around this. Classical mathemat-
ics, which uses Gödel codes instead of abstract syntax trees, uses
an untyped representation of proofs. It’s only later in the proof of
Löb’s theorem that a notion of a formula being “well-formed” is
introduced.

Here, we describe an alternate approach. Rather than giving up
types all-together, we can “box” the type of the hole, to hide it.
Using fst and snd to denote projections from a Σ type, using
\ulcorner A \urcorner to denote the abstract syntax tree for A,4 and using %s
to denote the first variable in the context (written as `VAR0' in
previous formalizations above), we can write:

dummy : Type (\varepsilon \triangleleft \ulcorner Σ Context Type\urcorner)
repr : Σ Context Type \rightarrow Term {\varepsilon } \ulcorner Σ Context Type\urcorner

cast-fst
: Σ Context Type \rightarrow Type (\varepsilon \triangleleft \ulcorner Σ Context Type\urcorner)

cast-fst (\varepsilon \triangleleft \ulcorner Σ Context Type\urcorner , T) = T
cast-fst (_ , _) = dummy

LöbSentence : Type \varepsilon
LöbSentence
= (\lambda (T : Σ Context Type)

\rightarrow \square (cast-fst T % repr T) `\rightarrow ' X)

3 In lob-build-quine.lagda.
4 Note that \ulcorner _\urcorner would not be a function in the language, but a meta-level
operation.

(\varepsilon \triangleleft \ulcorner Σ Context Type\urcorner
, \ulcorner (\lambda (T : Σ Context Type)

\rightarrow \square (cast-fst T % repr T) `\rightarrow ' X)
(%s) \urcorner

In this pseudo-Agda code, cast-fst unboxes the sentence that
it gets, and returns it if it is the right type. Since the sentence is, in
fact, always the right type, what we do in the other cases doesn’t
matter.

Summing up, the key ingredients to this construction are:

• A type of syntactic terms indexed over a type of syntactic types
(and contexts)

• Decidable equality on syntactic contexts at a particular point (in
particular, at Σ Context Type), with appropriate reduction on
equal things

Σ types, projections, and appropriate reduction on their projec-
tions

• Function types
• A function repr which adds a level of quotation to any syntax

tree
• Syntax trees for all of the above

In any formalization of dependent type theory with all of these
ingredients, we can prove Löb’s theorem.

11. Conclusion
What remains to be done is formalizing Martin–Löf type theory
without assuming repr and without assuming a constructor for
the type of syntax trees (`Context', `Type', and `Term' or `\square '
in our formalizations). We would instead support inductive types,
and construct these operators as inductive types and as folds over
inductive types.

If you take away only three things from this paper, take away
these:

1. There will always be some true things which are not possible to
say, no matter how good you are at talking in type theory about
type theory.

2. Giving meaning to syntax in a way that doesn’t use cases inside
cases allows you to talk about when it’s okay to add new syntax.

3. If believing in something is enough to make it true, then it
already is. Dream big.

A. Standard Data-Type Declarations
open import Agda.Primitive public

using (Level; _\sqcup _; lzero; lsuc)

in�xl 1 _, _
in�xr 2 _\times _
in�xl 1 _\equiv _

record \top {\ell } : Set \ell where
constructor tt

data \bot {\ell } : Set \ell where

\neg _ : \forall {\ell \ell \prime }\rightarrow Set \ell \rightarrow Set (\ell \sqcup \ell \prime)
\neg _ {\ell } {\ell \prime } T = T\rightarrow \bot {\ell \prime }

record Σ {a p} (A : Set a) (P : A\rightarrow Set p)
: Set (a \sqcup p)

8 2016/3/19

where
constructor _,_
�eld

fst : A
snd : P fst

open Σ public

data Lifted {a b} (A : Set a) : Set (b \sqcup a) where
lift : A\rightarrow Lifted A

lower : \forall {a b A}\rightarrow Lifted {a} {b} A\rightarrow A
lower (lift x) = x

_\times _ : \forall {\ell \ell \prime } (A : Set \ell) (B : Set \ell \prime)\rightarrow Set (\ell \sqcup \ell \prime)
A \times B = Σ A (\lambda _\rightarrow B)

data _\equiv _ {\ell } {A : Set \ell } (x : A) : A\rightarrow Set \ell where
re� : x \equiv x

sym : {A : Set}\rightarrow {x : A}\rightarrow {y : A}\rightarrow x \equiv y\rightarrow y \equiv x
sym re� = re�

trans : {A : Set}\rightarrow {x y z : A}\rightarrow x \equiv y\rightarrow y \equiv z\rightarrow x \equiv z
trans re� re� = re�

transport : \forall {A : Set} {x : A} {y : A}\rightarrow (P : A\rightarrow Set)
\rightarrow x \equiv y\rightarrow P x\rightarrow P y

transport P re� v = v

data List (A : Set) : Set where
\varepsilon : List A
:: : A\rightarrow List A\rightarrow List A

++ : \forall {A}\rightarrow List A\rightarrow List A\rightarrow List A
\varepsilon ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)

B. Encoding of Löb’s Theorem for the Prisoner’s
Dilemma

module lob where
in�xl 2 _ \triangleleft _
in�xl 3 _‘’_
in�xr 1 _‘\rightarrow ’_
in�xr 1 _‘‘\rightarrow ’’_
in�xr 1 _‘“\rightarrow ”’_
in�xl 3 _‘’a_
in�xl 3 _w‘‘’’a_
in�xr 2 _‘\circ ’_
in�xr 2 _‘\times ’_
in�xr 2 _‘‘\times ’’_
in�xr 2 _w‘‘\times ’’_

mutual
data Context : Set where

\varepsilon : Context
_ \triangleleft _ : (Γ : Context)\rightarrow Type Γ\rightarrow Context

data Type : Context\rightarrow Set where
`\top ' : \forall {Γ}\rightarrow Type Γ

`\bot ' : \forall {Γ}\rightarrow Type Γ
`\rightarrow ' : \forall {Γ}\rightarrow Type Γ\rightarrow Type Γ\rightarrow Type Γ
`\times ' : \forall {Γ}\rightarrow Type Γ\rightarrow Type Γ\rightarrow Type Γ
`Type' : \forall Γ\rightarrow Type Γ
`Term' : \forall {Γ}\rightarrow Type (Γ \triangleleft `Type' Γ)
Quine : \forall {Γ}\rightarrow Type (Γ \triangleleft `Type' Γ)\rightarrow Type Γ
W : \forall {Γ A}\rightarrow Type Γ\rightarrow Type (Γ \triangleleft A)
W1 : \forall {Γ A B}
\rightarrow Type (Γ \triangleleft B)
\rightarrow Type (Γ \triangleleft A \triangleleft W B)

`' : \forall {Γ A}
\rightarrow Type (Γ \triangleleft A)
\rightarrow Term A
\rightarrow Type Γ

data Term : {Γ : Context}\rightarrow Type Γ\rightarrow Set where
`tt' : \forall {Γ}\rightarrow Term {Γ} `\top '
`\lambda ' : \forall {Γ A B}
\rightarrow Term {Γ \triangleleft A} (W B)
\rightarrow Term (A `\rightarrow ' B)

`VAR0' : \forall {Γ T}\rightarrow Term {Γ \triangleleft T} (W T)
\ulcorner _\urcorner T : \forall {Γ}
\rightarrow Type Γ
\rightarrow Term {Γ} (`Type' Γ)

\ulcorner _\urcorner t : \forall {Γ T}
\rightarrow Term {Γ} T
\rightarrow Term {Γ} (`Term' `' \ulcorner T \urcorner T)

`\ulcorner `VAR0'\urcorner t' : \forall {Γ T}
\rightarrow Term {Γ \triangleleft `Term' `' \ulcorner T \urcorner T}

(W (`Term' `' \ulcorner `Term' `' \ulcorner T \urcorner T \urcorner T))
`\ulcorner `VAR0'\urcorner T' : \forall {Γ}
\rightarrow Term {Γ \triangleleft `Type' Γ}

(W (`Term' `' \ulcorner `Type' Γ \urcorner T))
`'a : \forall {Γ A B}
\rightarrow Term {Γ} (A `\rightarrow ' B)
\rightarrow Term {Γ} A
\rightarrow Term {Γ} B

``\times ''' : \forall {Γ}
\rightarrow Term {Γ} (`Type' Γ

`\rightarrow ' `Type' Γ
`\rightarrow ' `Type' Γ)

quine\rightarrow : \forall {Γ \varphi }
\rightarrow Term {Γ}

(Quine \varphi `\rightarrow ' \varphi `' \ulcorner Quine \varphi \urcorner T)
quine\leftarrow : \forall {Γ \varphi }
\rightarrow Term {Γ}

(\varphi `' \ulcorner Quine \varphi \urcorner T `\rightarrow ' Quine \varphi)
SW : \forall {Γ X A} {a : Term A}
\rightarrow Term {Γ} (W X `' a)
\rightarrow Term X

\rightarrow SW1SV\rightarrow W
: \forall {Γ T X A B} {x : Term X}
\rightarrow Term {Γ}

(T `\rightarrow ' (W1 A `' `VAR0' `\rightarrow ' W B) `' x)
\rightarrow Term {Γ}

(T `\rightarrow ' A `' x `\rightarrow ' B)
\leftarrow SW1SV\rightarrow W

: \forall {Γ T X A B} {x : Term X}
\rightarrow Term {Γ}

((W1 A `' `VAR0' `\rightarrow ' W B) `' x `\rightarrow ' T)
\rightarrow Term {Γ}

9 2016/3/19

((A `' x `\rightarrow ' B) `\rightarrow ' T)
\rightarrow SW1SV\rightarrow SW1SV\rightarrow W

: \forall {Γ T X A B} {x : Term X}
\rightarrow Term {Γ} (T `\rightarrow ' (W1 A `' `VAR0'

`\rightarrow ' W1 A `' `VAR0'
`\rightarrow ' W B) `' x)

\rightarrow Term {Γ} (T `\rightarrow ' A `' x `\rightarrow ' A `' x `\rightarrow ' B)
\leftarrow SW1SV\rightarrow SW1SV\rightarrow W

: \forall {Γ T X A B} {x : Term X}
\rightarrow Term {Γ} ((W1 A `' `VAR0'

`\rightarrow ' W1 A `' `VAR0'
`\rightarrow ' W B) `' x
`\rightarrow ' T)

\rightarrow Term {Γ} ((A `' x `\rightarrow ' A `' x `\rightarrow ' B) `\rightarrow ' T)
w : \forall {Γ A T}
\rightarrow Term {Γ} A
\rightarrow Term {Γ \triangleleft T} (W A)

w\rightarrow : \forall {Γ A B X}
\rightarrow Term {Γ \triangleleft X} (W (A `\rightarrow ' B))
\rightarrow Term {Γ \triangleleft X} (W A `\rightarrow ' W B)

\rightarrow w : \forall {Γ A B X}
\rightarrow Term {Γ \triangleleft X} (W A `\rightarrow ' W B)
\rightarrow Term {Γ \triangleleft X} (W (A `\rightarrow ' B))

ww\rightarrow : \forall {Γ A B X Y}
\rightarrow Term {Γ \triangleleft X \triangleleft Y} (W (W (A `\rightarrow ' B)))
\rightarrow Term {Γ \triangleleft X \triangleleft Y} (W (W A) `\rightarrow ' W (W B))

\rightarrow ww : \forall {Γ A B X Y}
\rightarrow Term {Γ \triangleleft X \triangleleft Y} (W (W A) `\rightarrow ' W (W B))
\rightarrow Term {Γ \triangleleft X \triangleleft Y} (W (W (A `\rightarrow ' B)))

`\circ ' : \forall {Γ A B C}
\rightarrow Term {Γ} (B `\rightarrow ' C)
\rightarrow Term {Γ} (A `\rightarrow ' B)
\rightarrow Term {Γ} (A `\rightarrow ' C)

w``''a : \forall {Γ A B T}
\rightarrow Term {Γ \triangleleft T} (W (`Term' `' \ulcorner A `\rightarrow ' B \urcorner T))
\rightarrow Term {Γ \triangleleft T} (W (`Term' `' \ulcorner A \urcorner T))
\rightarrow Term {Γ \triangleleft T} (W (`Term' `' \ulcorner B \urcorner T))

``'a' : \forall {Γ A B}
\rightarrow Term {Γ} (`Term' `' \ulcorner A `\rightarrow ' B \urcorner T

`\rightarrow ' `Term' `' \ulcorner A \urcorner T

`\rightarrow ' `Term' `' \ulcorner B \urcorner T)
``\square '' : \forall {Γ A B}
\rightarrow Term {Γ \triangleleft A \triangleleft B}

(W (W (`Term' `' \ulcorner `Type' Γ \urcorner T)))
\rightarrow Term {Γ \triangleleft A \triangleleft B}

(W (W (`Type' Γ)))
``\rightarrow '' : \forall {Γ}
\rightarrow Term {Γ} (`Type' Γ)
\rightarrow Term {Γ} (`Type' Γ)
\rightarrow Term {Γ} (`Type' Γ)

`�\rightarrow �' : \forall {Γ A B}
\rightarrow Term {Γ \triangleleft A \triangleleft B}

(W (W (`Term' `' \ulcorner `Type' Γ \urcorner T)))
\rightarrow Term {Γ \triangleleft A \triangleleft B}

(W (W (`Term' `' \ulcorner `Type' Γ \urcorner T)))
\rightarrow Term {Γ \triangleleft A \triangleleft B}

(W (W (`Term' `' \ulcorner `Type' Γ \urcorner T)))
`�\times �' : \forall {Γ A B}
\rightarrow Term {Γ \triangleleft A \triangleleft B}

(W (W (`Term' `' \ulcorner `Type' Γ \urcorner T)))
\rightarrow Term {Γ \triangleleft A \triangleleft B}

(W (W (`Term' `' \ulcorner `Type' Γ \urcorner T)))
\rightarrow Term {Γ \triangleleft A \triangleleft B}

(W (W (`Term' `' \ulcorner `Type' Γ \urcorner T)))

\square : Type \varepsilon \rightarrow Set _
\square = Term {\varepsilon }

`\square ' : \forall {Γ}\rightarrow Type Γ\rightarrow Type Γ

`\square ' T = `Term' `' \ulcorner T \urcorner T

``\times '' : \forall {Γ}
\rightarrow Term {Γ} (`Type' Γ)
\rightarrow Term {Γ} (`Type' Γ)
\rightarrow Term {Γ} (`Type' Γ)

A ``\times '' B = ``\times ''' `'a A `'a B

max-level : Level
max-level = lzero

mutual
J_Kc : (Γ : Context)\rightarrow Set (lsuc max-level)
J \varepsilon Kc = \top
J Γ \triangleleft T Kc = Σ J Γ Kc J T KT

J_KT : {Γ : Context}
\rightarrow Type Γ
\rightarrow J Γ Kc

\rightarrow Set max-level

J W T KT JΓK

= J T KT (Σ.fst JΓK)

J W1 T KT JΓK

= J T KT (Σ.fst (Σ.fst JΓK) , Σ.snd JΓK)

J T `' x KT JΓK = J T KT (JΓK , J x Kt JΓK)

J `Type' Γ KT JΓK
= Lifted (Type Γ)

J `Term' KT JΓK
= Lifted (Term (lower (Σ.snd JΓK)))

J A `\rightarrow ' B KT JΓK = J A KT JΓK\rightarrow J B KT JΓK

J A `\times ' B KT JΓK = J A KT JΓK \times J B KT JΓK

J `\top ' KT JΓK = \top
J `\bot ' KT JΓK = \bot
J Quine \varphi KT JΓK = J \varphi KT (JΓK , (lift (Quine \varphi)))

J_Kt : \forall {Γ : Context} {T : Type Γ}
\rightarrow Term T
\rightarrow (JΓK : J Γ Kc)

\rightarrow J T KT JΓK

J \ulcorner x \urcorner T Kt JΓK = lift x
J \ulcorner x \urcorner t Kt JΓK = lift x
J `\ulcorner `VAR0'\urcorner t' Kt JΓK

= lift \ulcorner lower (Σ.snd JΓK) \urcorner t

J `\ulcorner `VAR0'\urcorner T' Kt JΓK
= lift \ulcorner lower (Σ.snd JΓK) \urcorner T

J f `'a x Kt JΓK = J f Kt JΓK (J x Kt JΓK)
J `tt' Kt JΓK = tt
J quine\rightarrow {\varphi } Kt JΓK x = x
J quine\leftarrow {\varphi } Kt JΓK x = x
J `\lambda ' f Kt JΓK x = J f Kt (JΓK , x)
J `VAR0' K

t JΓK = Σ.snd JΓK
J SW t Kt = J t Kt

10 2016/3/19

J\leftarrow SW1SV\rightarrow W f Kt = J f Kt

J\rightarrow SW1SV\rightarrow W f Kt = J f Kt

J\leftarrow SW1SV\rightarrow SW1SV\rightarrow W f Kt = J f Kt

J\rightarrow SW1SV\rightarrow SW1SV\rightarrow W f Kt = J f Kt

J w x Kt JΓK = J x Kt (Σ.fst JΓK)
J w\rightarrow f Kt JΓK = J f Kt JΓK
J\rightarrow w f Kt JΓK = J f Kt JΓK
J ww\rightarrow f Kt JΓK = J f Kt JΓK
J\rightarrow ww f Kt JΓK = J f Kt JΓK
J ``\times ''' Kt JΓK A B = lift (lower A `\times ' lower B)
J g `\circ ' f Kt JΓK x = J g Kt JΓK (J f Kt JΓK x)
J f w``''a x Kt JΓK

= lift (lower (J f Kt JΓK) `'a lower (J x Kt JΓK))
J ``'a' K

t JΓK f x
= lift (lower f `'a lower x)

J ``\square '' {Γ} T Kt JΓK
= lift (`Term' `' lower (J T Kt JΓK))

J A ``\rightarrow '' B Kt JΓK
= lift

(lower (J A Kt JΓK) `\rightarrow ' lower (J B Kt JΓK))
J A `�\rightarrow �' B Kt JΓK

= lift
(lower (J A Kt JΓK) ``\rightarrow '' lower (J B Kt JΓK))

J A `�\times �' B Kt JΓK
= lift

(lower (J A Kt JΓK) ``\times '' lower (J B Kt JΓK))

module inner (‘X’ : Type \varepsilon)
(‘f’ : Term {\varepsilon } (`\square ' ‘X’ `\rightarrow ' ‘X’))

where
`H' : Type \varepsilon
`H' = Quine (W1 `Term' `' `VAR0' `\rightarrow ' W ‘X’)

`toH' : \square ((`\square ' `H' `\rightarrow ' ‘X’) `\rightarrow ' `H')
`toH' =\leftarrow SW1SV\rightarrow W quine\leftarrow

`fromH' : \square (`H' `\rightarrow ' (`\square ' `H' `\rightarrow ' ‘X’))
`fromH' =\rightarrow SW1SV\rightarrow W quine\rightarrow

`\square `H'\rightarrow \square `X'' : \square (`\square ' `H' `\rightarrow ' `\square ' ‘X’)
`\square `H'\rightarrow \square `X''

= `\lambda ' (w \ulcorner `fromH' \urcorner t

w``''a `VAR0'
w``''a `\ulcorner `VAR0'\urcorner t')

`h' : Term `H'
`h' = `toH' `'a (‘f’ `\circ ' `\square `H'\rightarrow \square `X'')

Löb : \square ‘X’
Löb = `fromH' `'a `h' `'a \ulcorner `h' \urcorner t

Löb : \forall {X}
\rightarrow Term {\varepsilon } (`\square ' X `\rightarrow ' X)\rightarrow Term {\varepsilon } X

Löb {X} f = inner.Löb X f

J_K : Type \varepsilon \rightarrow Set _

J T K = J T KT tt

`\neg '_ : \forall {Γ}\rightarrow Type Γ\rightarrow Type Γ
`\neg ' T = T `\rightarrow ' `\bot '

w``\times '' : \forall {Γ X}
\rightarrow Term {Γ \triangleleft X} (W (`Type' Γ))
\rightarrow Term {Γ \triangleleft X} (W (`Type' Γ))
\rightarrow Term {Γ \triangleleft X} (W (`Type' Γ))

A w``\times '' B = w\rightarrow (w\rightarrow (w ``\times ''') `'a A) `'a B

löb : \forall {‘X’}\rightarrow \square (`\square ' ‘X’ `\rightarrow ' ‘X’)\rightarrow J ‘X’ K
löb f = J Löb f Kt tt

incompleteness : \neg \square (`\neg ' (`\square ' `\bot '))
incompleteness = löb

soundness : \neg \square `\bot '
soundness x = J x Kt tt

non-emptiness : Σ (Type \varepsilon) (\lambda T\rightarrow \square T)
non-emptiness = `\top ' , `tt'

C. Proving that FairBot Cooperates with Itself
We begin with the definitions of a few particularly useful dependent
combinators:

_\circ _ : \forall {A : Set}
{B : A\rightarrow Set}
{C : {x : A}\rightarrow B x\rightarrow Set}
\rightarrow ({x : A} (y : B x)\rightarrow C y)
\rightarrow (g : (x : A)\rightarrow B x) (x : A)
\rightarrow C (g x)

f \circ g = \lambda x\rightarrow f (g x)

in�xl 8 _s_

s : \forall {A : Set}
{B : A\rightarrow Set}
{C : (x : A)\rightarrow B x\rightarrow Set}
\rightarrow ((x : A) (y : B x)\rightarrow C x y)
\rightarrow (g : (x : A)\rightarrow B x) (x : A)
\rightarrow C x (g x)

f s g = \lambda x\rightarrow f x (g x)

k : {A B : Set}\rightarrow A\rightarrow B\rightarrow A
k a b = a

^ : \forall {S : Set} {T : S\rightarrow Set} {P : Σ S T\rightarrow Set}
\rightarrow ((\sigma : Σ S T)\rightarrow P \sigma)
\rightarrow (s : S) (t : T s)\rightarrow P (s , t)

^ f s t = f (s , t)
It turns out that we can define all the things we need for proving

self-cooperation of FairBot in a variant of the simply typed lambda
calculus (STLC). In order to do this, we do not index types over
contexts. Rather than using Term {Γ} T, we will denote the type
of terms in context Γ of type T as Γ \vdash T, the standard notation for
“provability”. Since our types are no longer indexed over contexts,
we can represent a context as a list of types.

in�xr 5 _\vdash _ _‘\vdash ’_
in�xr 10 _‘\rightarrow ’_ _‘\times ’_

data Type : Set where
`\vdash ' : List Type\rightarrow Type\rightarrow Type
`\rightarrow ' _`\times '_ : Type\rightarrow Type\rightarrow Type
`\bot ' `\top ' : Type

11 2016/3/19

Context = List Type
We will then need some way to handle binding. For simplicity,

we’ll make use of a dependent form of DeBrujin variables.
data _\in _ (T : Type) : Context\rightarrow Set where

First we want our “variable zero”, which lets us pick off the
“top” element of the context.

top : \forall {Γ}\rightarrow T \in (T :: Γ)
Then we want a way to extend variables to work in larger

contexts.
pop : \forall {Γ S}\rightarrow T \in Γ\rightarrow T \in (S :: Γ)

And, finally, we are ready to define the term language for our
extended STLC.

data _\vdash _ (Γ : Context) : Type\rightarrow Set where
The next few constructors are fairly standard. Before anything

else, we want to be able to lift bindings into terms.
var : \forall {T}\rightarrow T \in Γ\rightarrow Γ \vdash T

Then the intro rules for all of our easier datatypes.
<> : Γ \vdash `\top '
, : \forall {A B}\rightarrow Γ \vdash A\rightarrow Γ \vdash B\rightarrow Γ \vdash A `\times ' B
`\bot '-elim : \forall {A}\rightarrow Γ \vdash `\bot '\rightarrow Γ \vdash A
\pi 1 : \forall {A B}\rightarrow Γ \vdash A `\times ' B\rightarrow Γ \vdash A
\pi 2 : \forall {A B}\rightarrow Γ \vdash A `\times ' B\rightarrow Γ \vdash B
`\lambda ' : \forall {A B}\rightarrow (A :: Γ) \vdash B\rightarrow Γ \vdash (A `\rightarrow ' B)
`'a : \forall {A B}\rightarrow Γ \vdash (A `\rightarrow ' B)\rightarrow Γ \vdash A\rightarrow Γ \vdash B

At this point things become more delicate. To properly capture
Gödel–Löb modal logic, abbreviated as GL, we want our theory to
validate the rules

1. \vdash A \rightarrow \vdash \square A

2. \vdash \square A `\rightarrow ' \square \square A

However, it should not validate \vdash A `\rightarrow ' \square A. If we only had
the unary \square operator we would run into difficulty later. Crucially,
we couldn’t add the rule Γ \vdash A \rightarrow Γ \vdash \square A, since this would
let us prove A `\rightarrow ' \square A.

We will use Gödel quotes to denote the constructor correspond-
ing to rule 1:

\ulcorner _\urcorner : \forall {\Delta A}\rightarrow \Delta \vdash A\rightarrow Γ \vdash (\Delta `\vdash ' A)
Similarly, we will write the rule validating \square A `\rightarrow ' \square \square A

as repr.
repr : \forall {\Delta A}\rightarrow Γ \vdash (\Delta `\vdash ' A)\rightarrow Γ \vdash (\Delta `\vdash ' (\Delta `\vdash ' A))

We would like to be able to apply functions under \square , and for
this we introduce the so-called “distribution” rule. In GL, it takes
the form \vdash \square (A `\rightarrow ' B) \rightarrow \vdash (\square A `\rightarrow ' \square B). For us it
is not much more complicated.

dist : \forall {\Delta A B}
\rightarrow Γ \vdash (\Delta `\vdash ' (A `\rightarrow ' B))
\rightarrow Γ \vdash (\Delta `\vdash ' A)
\rightarrow Γ \vdash (\Delta `\vdash ' B)

And, finally, we include the Löbian axiom.
Löb : \forall {\Delta A}
\rightarrow Γ \vdash (\Delta `\vdash ' ((\Delta `\vdash ' A) `\rightarrow ' A))
\rightarrow Γ \vdash (\Delta `\vdash ' A)

From these constructors we can prove the simpler form of the
Löb rule.

löb : \forall {Γ A}\rightarrow Γ \vdash ((Γ `\vdash ' A) `\rightarrow ' A)\rightarrow Γ \vdash A
löb t = t `'a Löb \ulcorner t \urcorner

Of course, because we are using DeBrujin indices, before we
can do too much we’ll need to give an account of lifting. Thank-
fully, unlike when we were dealing with dependent type theory, we
can define these computationally, and get for free all the congru-
ences we had to add as axioms before.

Our definition of weakening is unremarkable, and sufficiently
simple that Agsy, Agda’s automatic proof-finder, was able to fill in

all of the code; we include it in the artifact and elide all but the type
signature from the paper.

lift-tm
: \forall {Γ A} T \Delta \rightarrow (\Delta ++ Γ) \vdash A\rightarrow (\Delta ++ (T :: Γ)) \vdash A

Weakening is a special case of lift-tm.
wk : \forall {Γ A B}\rightarrow Γ \vdash A\rightarrow (B :: Γ) \vdash A
wk = lift-tm _ \varepsilon

Finally, we define function composition for our internal lan-
guage.

in�xl 10 _\circ \prime _
\circ ' : \forall {Γ A B C}
\rightarrow Γ \vdash (B `\rightarrow ' C)
\rightarrow Γ \vdash (A `\rightarrow ' B)
\rightarrow Γ \vdash (A `\rightarrow ' C)

f \circ ' g = `\lambda ' (wk f `'a (wk g `'a var top))
Now we are ready to prove that FairBot cooperates with itself.

Sadly, our type system isn’t expressive enough to give a general
type of bots, but we can still prove things about the interactions of
particular bots if we substitute their types by hand. For example, we
can state the desired theorem (that FairBot cooperates with itself)
as:

distf : \forall {Γ \Delta A B}
\rightarrow Γ \vdash (\Delta `\vdash ' A `\rightarrow ' B)
\rightarrow Γ \vdash (\Delta `\vdash ' A) `\rightarrow ' (\Delta `\vdash ' B)

distf bf = `\lambda ' (dist (wk bf) (var top))

evf : \forall {Γ \Delta A}
\rightarrow Γ \vdash (\Delta `\vdash ' A) `\rightarrow ' (\Delta `\vdash ' (\Delta `\vdash ' A))

evf = `\lambda ' (repr (var top))

fb-fb-cooperate : \forall {Γ A B}
\rightarrow Γ \vdash (Γ `\vdash ' A) `\rightarrow ' B
\rightarrow Γ \vdash (Γ `\vdash ' B) `\rightarrow ' A
\rightarrow Γ \vdash (A `\times ' B)

fb-fb-cooperate a b
= löb (b \circ ' distf \ulcorner a \urcorner \circ ' evf)

, löb (a \circ ' distf \ulcorner b \urcorner \circ ' evf)
We can also state the theorem in a more familiar form with a

couple abbreviations
`\square ' = _`\vdash '_ \varepsilon
\square = _\vdash _ \varepsilon

fb-fb-cooperate' : \forall {A B}
\rightarrow \square (`\square ' A `\rightarrow ' B)
\rightarrow \square (`\square ' B `\rightarrow ' A)
\rightarrow \square (A `\times ' B)

fb-fb-cooperate' = fb-fb-cooperate
In the file fair-bot-self-cooperates.lagda in the artifact,

we show all the meta-theoretic properties we had before: sound-
ness, inhabitedness, and incompleteness.

Acknowledgments
[Redacted for the anonymous submission]

References
T. Altenkirch and A. Kaposi. Type theory in type theory using quotient

inductive types. In POPL ’16 The 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. ACM, 2016.
URL http://eprints.nottingham.ac.uk/31169/.

T. Altenkirch, C. McBride, and W. Swierstra. Observational equality,
now! In Proceedings of the 2007 Workshop on Programming Lan-
guages Meets Program Verification, PLPV ’07, pages 57–68, New York,
NY, USA, 2007. ACM. ISBN 978-1-59593-677-6. doi: 10.1145/

12 2016/3/19

http://eprints.nottingham.ac.uk/31169/

1292597.1292608. URL http://www.cs.nott.ac.uk/~psztxa/
publ/obseqnow.pdf.

A. W. Appel, P.-A. Mellies, C. D. Richards, and J. Vouillon. A very
modal model of a modern, major, general type system. ACM SIGPLAN
Notices, 42(1):109–122, 2007. URL https://www.cs.princeton.
edu/~appel/papers/modalmodel.pdf.

M. Barasz, P. Christiano, B. Fallenstein, M. Herreshoff, P. LaVictoire, and
E. Yudkowsky. Robust cooperation in the prisoner’s dilemma: Program
equilibrium via provability logic. ArXiv e-prints, Jan 2014. URL
http://arxiv.org/pdf/1401.5577v1.pdf.

A. Berarducci and C. Böhm. Automatic synthesis of typed \lambda -
programs on term algebras. Theoretical Computer Science, 39
(820076097):135–154, 1985. doi: 10.1016/0304-3975(85)90135-5.
URL http://www.sciencedirect.com/science/article/pii/
0304397585901355.

M. Brown and J. Palsberg. Breaking through the normalization barrier: A
self-interpreter for f-omega. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 5–17. ACM, 2016. doi: 10.1145/2837614.2837623. URL
http://compilers.cs.ucla.edu/popl16/popl16-full.pdf.

J. Chapman. Type theory should eat itself. Electronic Notes in
Theoretical Computer Science, 228:21–36, 2009. ISSN 1571-
0661. doi: http://dx.doi.org/10.1016/j.entcs.2008.12.114. URL
http://www.sciencedirect.com/science/article/pii/
S157106610800577X. Proceedings of the International Workshop on
Logical Frameworks and Metalanguages: Theory and Practice (LFMTP
2008).

A. Church. A formulation of the simple theory of types. The Journal
of Symbolic Logic, 5(2):56–68, 1940. ISSN 00224812. URL http:
//www.jstor.org/stable/2266170.

N. A. Danielsson. A formalisation of a dependently typed language as
an inductive-recursive family. In T. Altenkirch and C. McBride, ed-
itors, Types for Proofs and Programs, volume 4502 of Lecture Notes
in Computer Science, chapter A Formalisation of a Dependently Typed
Language as an Inductive-Recursive Family, pages 93–109. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2007. ISBN 978-3-540-74464-
1. doi: 10.1007/978-3-540-74464-1_7. URL http://dx.doi.org/
10.1007/978-3-540-74464-1_7.

R. Davies and F. Pfenning. A modal analysis of staged computation. J.
ACM, 48(3):555–604, May 2001. ISSN 0004-5411. doi: 10.1145/
382780.382785. URL http://doi.acm.org/10.1145/382780.
382785.

H. Geuvers. The Church-Scott representation of inductive and coin-
ductive data, 2014. URL http://www.cs.ru.nl/~herman/PUBS/
ChurchScottDataTypes.pdf.

K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica
und verwandter Systeme I. Monatshefte für mathematik und physik,
38(1):173–198, 1931. URL http://www.w-k-essler.de/pdfs/
goedel.pdf.

D. R. Hofstadter. Gödel, Escher, Bach: An Eternal Golden Braid. Vintage,
1979. ISBN 978-0394745022.

O. Kiselyov. Beyond church encoding: Boehm-berarducci isomor-
phism of algebraic data types and polymorphic lambda-terms, April
2012. URL http://okmij.org/ftp/tagless-final/course/
Boehm-Berarducci.html.

S. C. Kleene. Introduction to Metamathematics. Wolters-Noordhoff, 1952.
ISBN 0-7204-2103-9.

C. McBride. Outrageous but meaningful coincidences: Dependent
type-safe syntax and evaluation. In Proceedings of the 6th
ACM SIGPLAN workshop on Generic programming, pages 1–12.
ACM, 2010. URL https://personal.cis.strath.ac.uk/conor.
mcbride/pub/DepRep/DepRep.pdf.

T. Æ. Mogensen. An investigation of compact and efficient number rep-
resentations in the pure lambda calculus. In Perspectives of System In-
formatics, 4th International Andrei Ershov Memorial Conference, PSI
2001, Akademgorodok, Novosibirsk, Russia, July 2-6, 2001, Revised Pa-
pers, pages 205–213, 2001. doi: 10.1007/3-540-45575-2_20. URL
http://dx.doi.org/10.1007/3-540-45575-2_20.

R. O’Connor. Essential incompleteness of arithmetic verified by coq. CoRR,
abs/cs/0505034, 2005. URL http://arxiv.org/abs/cs/0505034.

L. C. Paulson. A mechanised proof of Gödel’s incompleteness theo-
rems using Nominal Isabelle. Journal of Automated Reasoning, 55
(1):1–37, 2015. URL https://www.cl.cam.ac.uk/~lp15/papers/
Formath/Goedel-ar.pdf.

F. Pfenning and P. Lee. Metacircularity in the polymorphic \lambda -
calculus. Theoretical Computer Science, 89(1):137–159, 1991. ISSN
0304-3975. doi: http://dx.doi.org/10.1016/0304-3975(90)90109-U.
URL http://www.sciencedirect.com/science/article/pii/
030439759090109U.

D. Piponi. From löb’s theorem to spreadsheet evaluation, Novem-
ber 2006. URL http://blog.sigfpe.com/2006/11/
from-l-theorem-to-spreadsheet.html.

G. K. Pullum. Scooping the loop snooper, October 2000. URL http:
//www.lel.ed.ac.uk/~gpullum/loopsnoop.html.

D. Scott. A system of functional abstraction. Unpublished manuscript,
1963.

N. Shankar. Proof-checking Metamathematics (Theorem-proving). PhD
thesis, The University of Texas at Austin, 1986. AAI8717580.

N. Shankar. Metamathematics, Machines and Gödel’s Proof. Cambridge
University Press, 1997.

R. J. Simmons and B. Toninho. Constructive provability logic. CoRR,
abs/1205.6402, May 2012. URL http://arxiv.org/abs/1205.
6402.

A. Tarski. Der Wahrheitsbegriff in den formalisierten Sprachen. Studia
Philosophica, 1:261–405, 1936. URL http://www.w-k-essler.de/
pdfs/Tarski.pdf.

B. Yudkowsky. Lob’s theorem cured my social anxiety, Febru-
ary 2014. URL http://agentyduck.blogspot.com/2014/02/
lobs-theorem-cured-my-social-anxiety.html.

13 2016/3/19

http://www.cs.nott.ac.uk/~psztxa/publ/obseqnow.pdf
http://www.cs.nott.ac.uk/~psztxa/publ/obseqnow.pdf
https://www.cs.princeton.edu/~appel/papers/modalmodel.pdf
https://www.cs.princeton.edu/~appel/papers/modalmodel.pdf
http://arxiv.org/pdf/1401.5577v1.pdf
http://www.sciencedirect.com/science/article/pii/0304397585901355
http://www.sciencedirect.com/science/article/pii/0304397585901355
http://compilers.cs.ucla.edu/popl16/popl16-full.pdf
http://www.sciencedirect.com/science/article/pii/S157106610800577X
http://www.sciencedirect.com/science/article/pii/S157106610800577X
http://www.jstor.org/stable/2266170
http://www.jstor.org/stable/2266170
http://dx.doi.org/10.1007/978-3-540-74464-1_7
http://dx.doi.org/10.1007/978-3-540-74464-1_7
http://doi.acm.org/10.1145/382780.382785
http://doi.acm.org/10.1145/382780.382785
http://www.cs.ru.nl/~herman/PUBS/ChurchScottDataTypes.pdf
http://www.cs.ru.nl/~herman/PUBS/ChurchScottDataTypes.pdf
http://www.w-k-essler.de/pdfs/goedel.pdf
http://www.w-k-essler.de/pdfs/goedel.pdf
http://okmij.org/ftp/tagless-final/course/Boehm-Berarducci.html
http://okmij.org/ftp/tagless-final/course/Boehm-Berarducci.html
https://personal.cis.strath.ac.uk/conor.mcbride/pub/DepRep/DepRep.pdf
https://personal.cis.strath.ac.uk/conor.mcbride/pub/DepRep/DepRep.pdf
http://dx.doi.org/10.1007/3-540-45575-2_20
http://arxiv.org/abs/cs/0505034
https://www.cl.cam.ac.uk/~lp15/papers/Formath/Goedel-ar.pdf
https://www.cl.cam.ac.uk/~lp15/papers/Formath/Goedel-ar.pdf
http://www.sciencedirect.com/science/article/pii/030439759090109U
http://www.sciencedirect.com/science/article/pii/030439759090109U
http://blog.sigfpe.com/2006/11/from-l-theorem-to-spreadsheet.html
http://blog.sigfpe.com/2006/11/from-l-theorem-to-spreadsheet.html
http://www.lel.ed.ac.uk/~gpullum/loopsnoop.html
http://www.lel.ed.ac.uk/~gpullum/loopsnoop.html
http://arxiv.org/abs/1205.6402
http://arxiv.org/abs/1205.6402
http://www.w-k-essler.de/pdfs/Tarski.pdf
http://www.w-k-essler.de/pdfs/Tarski.pdf
http://agentyduck.blogspot.com/2014/02/lobs-theorem-cured-my-social-anxiety.html
http://agentyduck.blogspot.com/2014/02/lobs-theorem-cured-my-social-anxiety.html

	Introduction
	Quines and the Curry–Howard Isomorphism
	Abstract Syntax Trees for Dependent Type Theory
	This Paper
	Prior Work
	Trivial Encoding
	Encoding with Soundness, Incompleteness, and Non-Emptiness
	Encoding with Quines
	Digression: Application of Quining to The Prisoner's Dilemma
	The Prisoner's Dilemma
	Adding Source Code

	Encoding with an Add-Quote Function
	Conclusion
	Standard Data-Type Declarations
	Encoding of Löb's Theorem for the Prisoner's Dilemma
	Proving that FairBot Cooperates with Itself

