
Correct-by-Construction Program Derivation
from Specifications to Assembly Language

Abstract
We present a Coq-based system to certify the entire process
of implementing declarative mathematical specifications with
efficient assembly code. That is, we produce formal assembly-
code libraries with proofs, in the style of Hoare logic, demon-
strating compatibility with relational specifications in higher-
order logic. Most code-generation paths from high-level lan-
guages involve the introduction of garbage collection and
other runtime support for source-level abstractions, but we
generate code suitable for resource-constrained embedded
systems, using manual memory management and in-place
updating of heap-allocated data structures. We start from very
high-level source code, applying the Fiat framework to re-
fine set-theory expressions into functional programs; then we
further apply Fiat’s refinement tools to translate functional
programs into Facade, a simple imperative language without
a heap or aliasing; and finally we plug into the assembly-
generation features of the Bedrock framework, where we link
with handwritten data-structure implementations and their
associated proofs. Each program refinement leads to a proved
Hoare-logic specification for an assembly function, with no
trust dependencies on any aspect of our synthesis process,
which is highly automated.

1. Introduction
One of the fundamental sources of progress in programmer
productivity is the introduction of new abstractions. SQL
databases, for instance, are commonly applied to manage
persistent relational data via high-level notation for queries
and updates. Unfortunately, the challenges of efficiently
implementing a database engine, e.g. the selection of low-
level data structures, concurrency management, etc., are
so daunting that most programmers would never consider
extending an engine with new features for fear of breaking it.

The situation for compilers is broadly similar. The average
programmer dares not modify a compiler for languages like
C or Java. It is too easy to introduce bugs that generate wrong
code for programs that used to be compiled correctly. Still,
often one very specific, custom optimization could make
a large performance difference, and we might wish for a
compiler-extension methodology that guarantees soundness.

For instance, the usual strategy of a Java compiler may be
less suitable for embedded systems with significant resource
constraints. We might prefer to have the programmer explain
clever rules for implementing particular high-level code
patterns with low-level code, if we can be sure that no
unsound rules are admitted into the system.

These two examples fall within a general pattern. We have
some source language, more or less declarative, but always
with a formal semantics. Some tool implements efficient
translation to a different language, itself with a semantics.
In a pipeline of several such tools, the semantics provide a
theoretical basis for reasoning about end-to-end translation
correctness. A variety of tools make sense from that perspec-
tive, including generators for parsers and pretty-printers for
programming languages and network-protocol wire formats.
The overall picture gets more interesting when we move be-
yond a traditional pipeline of black-box C compiler, parser
generator, etc., and aim to make each translation tool exten-
sible. Programmers should be able to safely teach compilers
new tricks when they can provide evidence that the tricks are
sound.

In this paper, we present an end-to-end methodology
for automatic derivation of efficient assembly code from
relational specifications, where each of our several key
stages supports correct-by-construction extension with
new derivation strategies. Our framework is implemented
inside the Coq proof assistant, and our final theorems about
assembly programs have very small trusted bases that com-
pletely exclude all synthesis tools and compilers. We use
Coq’s Turing-complete tactic (i.e., proof procedure) language
Ltac [Delahaye 2000] as a unified setting for describing
correct-by-construction program transformations; we pro-
vide libraries of both verified program refinement rules and
heuristics for applying them in sequence, and any user of
our framework may (soundly) add new rules and heuristics,
while reusing ours as building blocks. As a case study, we
demonstrate a unified tactic for refining set-theory specifica-
tions of list functions into efficient assembly code, completely
automatically.

This paper combines three prior Coq libraries to imple-
ment the methodology described above. The initial stages

1

������
����	A�B�

������
����	A�B�

ABCBD�
CEF�����

���E
CEF�����
�	����	E�
��D�EC�
��B��E�F

����

Figure 1. Synthesis and compilation pipeline
of this pipeline use Fiat [Delaware et al. 2015], a library
for correct-by-construction program derivation by stepwise
refinement. Starting from concise specifications in set theory,
Fiat synthesizes source-code programs in Gallina, Coq’s func-
tional programming language. The Cito [Wang et al. 2014]
programming language is the foundation for the intermediate
stage of this pipeline. Cito is a programming language in
the style of C++, with explicit support for data abstraction
when linking against assembly code compiled from multiple
programming languages. The target of the Cito compiler is
the Bedrock framework [Chlipala 2011, 2013; Malecha et al.
2014], a Coq library for orchestrating implementation and
verification of multilanguage programs, bottoming out in as-
sembly language with a common module interface formalism.
This paper demonstrates how to connect these pieces to form
a certified pipeline from high-level specifications to assembly
language implementations, where we are able to link our syn-
thesized program modules (and their proofs) with modules
written (and verified) using a variety of languages.

Figure 1 sketches the high-level structure of our certified
pipeline. We overview the elements here and then return to
them in detail in dedicated sections.

1. We begin with declarative specifications in the succinct
style of set theory. Our concrete case study works with
functions over lists (i.e., mathematical sequences).

2. The first compilation step is to refine specifications into
functional programs (see Section 2). These functional pro-

grams are written in Gallina, the pure ML-like language
that doubles as Coq’s logic. While the original specs are
“written in math” and so not directly executable, the func-
tional programs we generate are efficient, modulo avail-
ability of good implementations of key abstract data types
(ADTs), like finite sets. Outputs of this stage record their
ADT dependencies explicitly, via abstract specifications
in the Fiat style [Delaware et al. 2015].

3. Next, we refine Gallina programs into imperative pro-
grams (see Section 4) in a novel intermediate language,
Facade. Facade is a C++-style language with no explicit
heap. Rather, all program state lives within the local vari-
ables of dynamic function calls. Local variables are muta-
ble and may be passed by reference in function calls. This
refinement process uses libraries of hints to implement
various functional-programming constructs in an impera-
tive language. Crucially, the results do not rely on garbage
collection, instead synthesizing correct-by-construction
code that does manual memory management and in-place
updating of data structures.

4. Composing our new Facade compiler (see Section 5)
with the existing Cito compiler [Wang et al. 2014], we
generate Bedrock assembly modules from the Facade code
output by the prior step. The major hurdle in verifying
this compiler stems from the semantic gap in how the two
languages represent memory. Cito exposes a heap with
pointers and aliasing, while Facade has a more disciplined
world where state is pointer-free and lives only in local
variables. We found this staged introduction of mutable
state supports a convenient decomposition of proof effort.

5. Throughout the last three stages, dependencies have been
maintained on arbitrary implementations of ADTs. We
may implement ADTs in Fiat, but it is also pragmatic to
implement them directly in the C-like language Bedrock
provides [Chlipala 2013] and verify them using Bedrock’s
low-level proof automation [Malecha et al. 2014]. It is
possible to achieve better performance with clever manual
implementation than via our compilation pipeline.

6. Finally, we link the assembly modules produced by syn-
thesis and by semi-automatic verification (see Section 6),
leading to closed programs with small-trusted-base Coq
correctness theorems that do not mention any of our com-
pilation, synthesis, or verification machinery.

The middle stages of this pipeline constitute an alternative
approach to compiling functional languages, especially rele-
vant to resource-constrained platforms, and applicable outside
the context of synthesis from specifications. The same phases
are also of interest as an alternative to the program extraction
feature of Coq [Letouzey 2003] and other proof assistants,
where functional programs within a logic may be translated
into more mainstream functional languages and compiled
with their compilers. Our approach supports extraction-like
functionality that is more trustworthy, since we produce Coq

2

λ` : list(W). Fold (+) 0 �`�

(a) declarative spec

λ`. π1(fold left (λn (m,S). if S .Mem(n) then (m,S)
else (n + m,S .Add(n))) (0, new FiniteSet()) `)

(b) functional Gallina program

int f (List L) returns m {
m = 0;
S = new FiniteSet();
while (!L.IsEmpty()) {

n = L.Pop();
if (!S .Mem(n)) {

m = n + m;
S .Add(n); }}

delete S ; delete L; return m; }
(c) imperative Facade program

m : Bedrock.module.
∀` : list(W). {LinkedList(`, L) ?Malloc}

r = m.f (L)
{r ∈ (Fold (+) 0 �`�) ∧Malloc}

(d) Bedrock assembly module (with separation-logic spec)

Figure 2. Translating an example spec to assembly

refinement proofs connecting programs to assembly code;
and amenable to producing higher-performance code, since
programmers may extend the system with specialized compi-
lation strategies as proved-correct refinement rules.

As a more concrete example, consider Figure 2, showing a
program at four key stages during its refinement into assembly
code. Figure 2a shows the relational specification that we
start with, formalizing the idea of computing the sum of
all unique elements of a list of numbers. For convenience
throughout the paper, we work with numbers in the domain
W of 32-bit machine words. We write �`� for the set of
elements appearing in list `, and we write Fold for folding
an associative-commutative operator over all elements of a
set. The latter will be undefined for infinite sets. (While the
code in Figure 2a looks like a normal functional program,
it actually expands into set-theory notation denoting a set,
which in this case always has exactly one element, but in
general in Fiat may have zero or many elements.)

Skipping to the end in Figure 2d, we see the final product:
a module of assembly code within Bedrock’s specification
formalism. In particular, the final module m contains a code
label f , and within the module is a proof of a specification
for this label, in the style of Hoare logic. In particular,
we follow separation logic [Reynolds 2002], a flavor of
Hoare logic with good support for reasoning about heap-
allocated data structures with potential aliasing. The spec
in Figure 2d gives a precondition and postcondition for an

arbitrary call to the function f on an (untyped) argument
pointer L. The precondition asserts that L is the root of some
singly linked list, representing mathematical list `, which we
quantify over and connect to the pointer using an abstract
predicate [Parkinson and Bierman 2005] that encapsulates
the details of some pointer-based, imperative representation
of lists with associated methods. We use separation logic’s
separating conjunction ? to express that, when calling the
function, in some part of memory disjoint from the list L,
there must appear the data structures of a standard malloc
library. This particular synthesized code will use malloc
and free both to allocate a finite set as a temporary data
structure and to free the memory associated with the input
list. Finally, the postcondition says that the function return
value r contains exactly the answer prescribed by the original
spec of Figure 2a, and some valid malloc state remains in
memory (though the list has been deallocated).

The figure also highlights some key intermediate steps
in the derivation. Figure 2b shows a first executable version,
as a pure functional program. The key idea is to introduce
an intermediate data structure, a finite set recording which
numbers have already been encountered as we traverse the
input list with a fold left. Rather than hardcoding use of a
particular implementation of finite sets, we parameterize the
program over an arbitrary correct implementation of a Fiat
ADT spec. Later, we plug in an implementation in a C-like
language within Bedrock.

Another interesting step connects Figures 2b and 2c, where
we have produced code in Facade, an imperative language
with manual memory management. The expanded code more
or less follows the structure of Figure 2b, but we must account
explicitly for object lifetimes and mutation. For instance, we
traverse the list L with a loop, where we call the list method
Pop() to remove the first element of the list, returning that ele-
ment as the method result. At the end of the function, we must
deallocate the list with delete. Our derivation process guaran-
tees that we manage memory correctly while preserving the
behavior of the original functional program and, transitively,
the relational spec.

We will present the techniques that allow us to refine from
the beginning of the figure to the end, automatically, while
still generating rigorous Coq proofs from first principles,
where the guarantee about the final assembly program may
be understood without reference to any of the programming or
proving tools we have developed for this project in particular.
The dependencies are just on the syntax and semantics of an
assembly language (the Bedrock IL [Chlipala 2013]).

To summarize the contributions of this paper:

• We provide the first mechanically certified translation
pipeline from declarative specifications to assembly-
language libraries.
• We introduce a proof-generating approach to deriv-

ing imperative programs from functional programs
within a general stepwise refinement framework.

3

• We present a novel imperative intermediate language
with a formal semantics and verified compiler, support-
ing gradual bridging of the gap between pure functional
code and pointer-based imperative code.
• The pipeline overall supports abstraction over ADT im-

plementations, compatible with satisfaction via hand-
written (and hand-verified) low-level code.

The remainder of the paper introduces the stages of our
pipeline in order and then discusses our empirical evaluation.

2. Correct-by-Construction Functional Code
Our goal is to synthesize assembly-level code from high-
level specifications of set-manipulating programs. These
specifications are written using the FiatL DSL:

S := x | S ∪S | S ∩S | S−S | {x | P x} | �S� | �S� | Fold f i S

FiatL includes the standard set operators plus operators for
mapping lists to sets and vice-versa, respectively � � and � �,
and an operator Fold that folds an associative-commutative
operator over all elements of a set. This “DSL” is actually
just a set of combinators defined in Gallina, Coq’s functional-
programming language, so all the usual Gallina features
are available implicitly, for instance for doing arithmetic or
defining Fold functions anonymously.

The initial stage of compilation is one of refinement: a
high-level specification in this DSL that admits a number of
different implementations is iteratively refined to produce a
single (and hopefully efficient) implementation in a high-level
functional language.

Foundations of Computational Refinement Fiat repre-
sents high-level specifications of set-manipulating func-
tions as nondeterministic computations, or sets of values
satisfying some defining property. We have the usual set-
comprehension notation { | } available, along with two
monad-style [Wadler 1992] combinators ret for building a
singleton set and “bind”, written “ ← ; ”, combining two
computations.

ret a ≡ {a}
x ← ca; cb(x) ≡ {b | ∃ a ∈ ca. b ∈ cb(a)}

Consider the following specification of a function that filters
out any words in a list ls above a threshold x :

LtUniqueSpec ls x ≡ {l | �l� = �ls�− {w | w < x}}

This specification admits a number of implementations
by not fixing the order of the filtered list and by using
the nonexecutable set-minus operator to removes elements
from ls . Thus, a function implementing LtUniqueSpec could
choose to implement the set subtraction as a filter over ls or
rev(ls). Either choice represents a more refined version of
LtUniqueSpec, with refinement defined by the subset relation

⊆ on the set of implementations allowed by each specification.
Intuitively, a computation c ′ is a refinement of a computation
c if c ′ only “computes” to values that c can “compute” to.

Deductive Synthesis The end result of synthesis is a sharp-
ened or fully deterministic computation that computes to
precisely one value, coupled with a proof that it is a valid
refinement of such a specification:

sharpened Spec ≡ Σ Impl. Spec ⊇ Impl

A derivation is simply a user-guided search for the two
components of this dependent pair.

The transitivity and reflexivity of refinement allow us to
decompose a derivation into a sequence of applications of
basic refinement facts. The search for an implementation
of a specification Cspec consists of transitively applying
refinement facts drawn from a database until a deterministic
implementation is found, at which point reflexivity finishes
the proof of refinement:

Cspec ⊇ C1
LEM0

C1 ⊇ C2
LEM1

Cimpl ⊇ Cimpl
RREFL

···
C1 ⊇ Cimpl

RTRANS

Cspec ⊇ Cimpl
RTRANS

It is important to note that while building this proof
trace interactively, Cimpl is unspecified (i.e. a unification
variable): it is only when the user is satisfied with the
implementation and applies RREFL that Cimpl is instantiated
with an implementation. Refinement facts such as LEM0 and
LEM1 are simply Coq theorems whose mechanically checked
proofs are built in the standard way.

Interfacing with high-assurance foreign code via ADTs
Code synthesized by Fiat is parameterized by a set of ab-
stract data types [Liskov and Zilles 1974] (ADTs) used to
interface with external code. For instance, when we generate
implementations of FiatL specs, we assume an implementa-
tion of an ADT of finite sets.

Fiat defines ADTs as records of state types and compu-
tations implementing operations over states. Figure 3 gives
a specification of the finite-set ADT used by FiatL. In the
signature of ADT methods, rep stands for an arbitrary ab-
stract implementation type. The FiniteSetSpec functional
specification is a nondeterministic reference implementation
that uses mathematical sets as its representations type; its
associated method implementations use standard set opera-
tions to express how any implementation of this ADT must
behave. Here we use Coq’s Ensemble type family, which is
the equivalent of the informal idea of a mathematical set, with
elements drawn only from a specified type.

While mathematical structures are convenient for specify-
ing methods, they are unsuitable for an implementation. Fiat
uses abstraction relations [He et al. 1986; Hoare 1972] to

4

Definition FiniteSetSpec : ADT FiniteSetSig :=
ADTRep (Ensemble W) {
Def Constructor Empty (: unit) : rep := ret ∅,
Def Method Add (xs : rep , x : W) : unit :=
ret (xs ∪ {x}, tt),

Def Method Remove (xs : rep , x : W) : unit :=
ret (xs − {x}, tt),

Def Method In (xs : rep , x : W) : bool :=
b ←{ b : bool | b = true ↔x ∈ xs }; ret (xs, b),

Def Method Size (xs : rep , : unit) : W :=
n ← | xs | ; ret (xs, n) }.

Figure 3. Fiat specification of finite-set ADT
justify refinement of representation types. An abstraction re-
lation A ≈ B between two ADTs sharing a common interface
is a binary relation on the representation types of A and B that
is preserved by each method. In other words, the operations
of the two ADTs take similar input states to similar output
states. Since operations in Fiat are implemented as computa-
tions, the methods of B may be computational refinements
of A. Thus, an ADT method B.m is a refinement of A.m if
(taken from [Delaware et al. 2015])

A.m ' B.m ≡ ∀ rA rB . rA ≈ rB ⇒
∀ i r ′B o. B.m(rB , i) 3 (r ′B , o) ⇒
∃r ′A. A.m(rA, i) 3 (r ′A, o) ∧ r ′A ≈ r ′B

The quantified variable i stands for the method’s other inputs,
beside the “rep” value in the data type itself; and o is similarly
the parts of the output value beside “rep.”

B is a refinement of A if all the operations of B are
refinements of the operations of A:

A ' B ≡ ∀m. A.m ' B.m

The relation' is indexed by the abstraction relation≈, so that
we write A '≈ B to indicate that relation ≈ demonstrates
the compatibility of A and B. Thus, we define refinement
formally as:

A ' B ≡ ∃R. A 'R B

An implementation of a reference ADT implementation A
is simply an ADT B that is a valid refinement of A whose
methods always compute to precisely one value:

SharpenedADT A ≡ ΣB. A ' B ∧ ∀m, x. ∃v. B.m(x) ⊆ ret v

Automated Derivation The core of Fiat includes a collec-
tion of theorems proving basic refinement facts for construct-
ing these proof trees, which we have augmented with addi-
tional refinement rules about set operations and the ensemble
and list conversion functions. Fiat automates mechanized
derivations using Coq’s setoid rewriting tactics, which extend
Coq’s rewriting machinery with support for partial-order re-
lations other than Leibniz equality1. We have also written a

1 The Coq documentation has a full explanation of the machinery involved.

library of automation tactics synthesizing implementations
of specifications of set-manipulating programs. These tactics
allow a multitude of fully automated examples, where many
FiatL programs can be compiled in full to functionally correct
Gallina code with a single tactic.

These tactics intelligently chain together rewrites with re-
finement lemmas to implement a specification incrementally
by looking for subterms to rewrite. For example, the library in-
cludes a proof of the following fact: nondeterministic choice
of the size of a set S (expressed noncomputationally with a
set-theory expression |S |) can be implemented by picking
an equivalent list l , converting it into a finite set using some
implementation of the ADT from Figure 3, and calling the
Size method on the result:

|S | ⊇ l ← {l | l ≈ S}; f ← {f | f ≈ l}; ret f .Size()

We also include another refinement lemma showing how to
build a finite set equivalent to a list:

{f | f ≈ l} ⊇ ret (fold (λx , f . f .Add(x)) Empty l)

Our tactics combine these two lemmas automatically to build
a function that counts the number of unique elements in a list
by folding over the list to add the elements to a finite set, then
returning the size of that finite set.

3. Bridging Gallina and Bedrock via Facade
We could stop here by extracting to OCaml and compiling
the resulting code, but we want to push our Coq correctness
proofs all the way down to the assembly level, in addition to
freeing ourselves from trusting Coq extraction or the OCaml
compiler or runtime system. The high-level approach is to
synthesize an equivalent program in Facade, a new untyped
imperative language without the complications of a heap,
pointers, aliasing, or memory leaks. Facade additionally sup-
ports linking with external code by means of axiomatic ADT
specifications. Those specifications may be implemented and
verified with any tools connected to the Bedrock framework.

This crucial pair of features creates a convenient fit with
the output of the refinements introduced in the prior section:
we may mimic the structure of the ADT-parameterized,
functional Gallina programs fairly easily, but we are also
reasonably close to the level of assembly code, so we make
genuine progress towards the machine level by translating
between the two languages.

The name we chose for Facade suggests that it is a light
wrapper on top of something else, and that something else
is the Cito language, for which a to-Bedrock compiler was
verified in prior work [Wang et al. 2014]. Cito is an ideal-
ized C++-like language with a simplified view of memory.
In particular, in contrast to the C-style view of memory as
a set of objects that contain primitive values like integers,
Cito presents a heap of objects associated with ADTs. Each
object is represented with a mathematical model, for instance
with imperative finite sets represented with mathematical sets,

5

http://coq.inria.fr/distrib/current/refman/Reference-Manual029.html

Constant w ∈ W
Label l ∈ Smodule × Sfun

Variable x ∈ S
Binary Op o ::= + | − | × | = | 6= | < | ≤

Expression e ::= x | w | e o e
Statement s ::= skip | s; s | if e {s} else {s} | x := e

| while e {s} | x := call l (x)
Function f ::= fun (x) returns x { s }

Figure 4. Facade syntax

and imperative linked lists represented with mathematical se-
quences. The semantics is parameterized over an arbitrary set
of ADTs with mathematical models and associated methods.

Cito has a mixed operational-axiomatic semantics: a pro-
gram operates in a context Ψ that assigns specifications to
function identifiers, where some functions are assigned Cito
statements as usual, called operational specs, but others may
be assigned Hoare-logic preconditions and postconditions,
called axiomatic specs. In the operational semantics, a call
to a function with an operational spec proceeds as usual, but
a call to a function with an axiomatic spec checks that the
precondition is satisfied and then nondeterministically transi-
tions to a post-state satisfying the postcondition. Axiomatic
specs are written in the small-footprint style of separation
logic, only mentioning parts of the heap that functions will
touch, and the Cito operational semantics takes care of ex-
tracting, modifying, and replacing subheaps during calls to
axiomatic functions. The correctness proof for the Cito com-
piler justifies these manipulations using separation logic, but
translation steps at the Cito level and above may take that
implementation for granted, reasoning only at the level of
Cito’s operational semantics.

We designed Facade to sit at an even higher level of ab-
straction, where the only mutable state is in the local variables
of dynamic function calls. Variables storing ADT values are
passed to methods by reference, but otherwise there are no
pointer-like features. To support straightforward translation to
Cito, we impose additional syntactic rules. For instance, it is
not legal to copy an ADT value directly from one variable to
another with an assignment, since, in the corresponding Cito
code, such a step would introduce aliasing, which we want to
shield the programmer from. Another rule prohibits passing
the same ADT variable multiple times in different arguments
to a single method call. Overall, the restrictions are designed
to support the idea that mutable objects are uniquely asso-
ciated with particular local variables in particular dynamic
function calls, following a style that is common in C++.

Figure 4 gives the syntax of Facade, which is almost identi-
cal to that of Cito and includes the usual statement constructs
for assignment, sequencing, conditional tests, loops, and func-
tion calls. We write X for a sequence of zero or more X ’s. To
simplify the semantics, expressions e can only include safe
and total operations like arithmetic, while function calls can

be made only via dedicated forms of statements. A function
call is made via a label, which consists of a module name
and a function name. A function consists of a list of formal
parameter names, a body, and a choice of a variable to return.

The key difference between Facade and Cito is in their
treatment of machine states. Cito machine states include local-
variable stores, mapping variables to integers (which may
be used as pointers); plus heaps mapping pointers to ADT
values. Facade retains only the local-variable stores, notated
σ, mapping variables to either scalars (written as SCA) or
ADT values (written as ADT). As in Cito, the Facade syntax
and semantics are parameterized on a domain A of ADT
models. For our case study in this paper, A includes both
sequences and finite sets. Importantly, the members of A
are mathematical models of ADT values, not pointer-based
implementations. Just as with Fiat ADT specifications, the
Facade finite-set ADT is represented by a mathematical set,
rather than with a balanced tree or hash table.

Figure 5 shows the Facade specification of the finite-
set ADT, which is identical to the Cito specification. We
define the model domain A as a variant type including
a constructor FSET, for finite sets represented with Coq
ensembles. The ADT has an associated set of methods, each
with a precondition and postcondition. A precondition is a
function over the values of the actual parameters, where each
may be a scalar SCA or an ADT value ADT. For instance, the
precondition of add requires that the input argument list has
length 2, with the first argument encoding a finite set s and
the second argument holding a scalar w . A postcondition is a
function over the before and after versions of the parameters,
plus the return value. The postcondition of add explains the
evolution of the parameters, where the first argument has
transitioned from representing set s to set s ∪ {w}. After
values for scalar arguments (such as the second argument of
add) are ignored by the semantics. Furthermore, we force
the return value to be an arbitrary scalar, promising that it is
not some ADT object that the caller would be responsible
for deallocating. A more interesting constraint on the return
value appears in the postcondition of new, where we assert
that the return value is a fresh finite set representing ∅.

Figure 6 puts this notation to work in the Facade oper-
ational semantics, closely mirroring Cito’s semantics. The
general form is Ψ ` (σ, s) ⇓ σ′, saying that statement s may
execute in initial state σ and produce final state σ′, in context
Ψ that assigns specs to function labels. We omit Ψ in rules
where it is not used directly, implicitly threading it through
all premises in the obvious way.

The middle rules of the figure are straightforward, giving
the usual meanings of sequencing, conditionals, and loops.
The first rule, for assignment, is unusual in requiring that
(1) the expression being assigned must evaluate to some
scalar, since blithely copying an ADT into a new variable
would create aliasing in the pointer-based implementation
underlying Facade; and (2) the target variable is not already

6

A = FSET(P) + · · · P = P(W) (* sets of machine integers *)

{λI . I = []} new {λ(O,R). O = [] ∧ R = ADT(FSET(∅))}
{λI . ∃s. I = [ADT(FSET(s))]} delete {λ(O,R). ∃s. O = [(ADT(FSET(s)),⊥)] ∧ R = SCA(·)}
{λI . ∃s. I = [ADT(FSET(s))]} size {λ(O,R). ∃s. O = [(ADT(FSET(s)), FSET(s))] ∧ R = SCA(|s|)}

{λI . ∃s,w . I = [ADT(FSET(s)), SCA(w)]} add {λ(O,R). ∃s,w . O = [(ADT(FSET(s)), FSET(s ∪ {w})),
(SCA(w),⊥)] ∧ R = SCA(·)}

Figure 5. An example Facade ADT specification (finite sets) taken from [Wang et al. 2014]

JeKσ = SCA() σ(x) 6= ADT()

(σ, x := e) ⇓ σ[x → JeKσ]
ASSIGN

(σ, skip) ⇓ σ
SKIP

(σ, s1) ⇓ σ′ (σ′, s2) ⇓ σ′′

(σ, s1; s2) ⇓ σ′′ SEQ

(JeKσ 6= 0 ∧ (σ, sT) ⇓ σ′) ∨ (JeKσ = 0 ∧ (σ, sF) ⇓ σ′)

(σ, if e {sT} else {sF}) ⇓ σ′ IF

(σ, if e {s; while e {s}} else {skip}) ⇓ σ′

(σ, while e {s}) ⇓ σ′ WHILE

Ψ(l) = AX(pre, post) σ(x) 6= ADT()
pre(σ(y)) |v | = |y | post(σ(y)B v , r)

Ψ ` (σ, x := call l (y)) ⇓ σ[y → v][x → r]
CALLAX

Figure 6. Operational semantics of Facade

(s1,σ) ↓ ∀σ′. (σ, s1) ⇓ σ′ ⇒ (s2,σ′) ↓

(s1; s2,σ) ↓

Figure 7. A selected rule of the Facade safety judgment

holding an ADT value, which we would need to deallocate
first to avoid a memory leak under the hood.

The last rule is most interesting. It handles calls to func-
tions with axiomatic specs. (The rule for operational specs,
which we omit, is similar.) The premises say, in order: look
up the spec for the callee, finding its precondition and post-
condition; check the status of the variable x where we will
write the return value, making sure it does not already hold an
ADT value (for the same reason as in basic assignment); ver-
ify that the actual arguments y satisfy the precondition; pick
some after values v for the actual arguments, represented as a
sequence of the same length; and check that the postcondition
applies to the result of zipping together the before and after
versions of the arguments with B, plus some return value
r . The rule conclusion tells us that y and x are overwritten
appropriately. Note that v might contain ⊥ values, indicating
that those arguments are no longer owned by the caller; or
it might contain new ADT values for some arguments, indi-
cating mutation. The return value can be either a scalar or an
ADT value, with the latter indicating allocation or transfer of
ownership.

One last important ingredient is Facade’s adaptation of
the safety predicate from the Cito semantics. A judgment

(σ, s) ↓ asserts that statement s will execute safely from state
σ, along any possible nondeterministic execution path. The
only source of nondeterminism is in rule CALLAX, where
new variable values and return value are chosen subject to
the postcondition. For instance, a finite-set implementation
might include a method to choose an arbitrary element of a
nonempty set.

The importance of safety is in proving that Facade pro-
grams avoid the equivalent of C’s undefined behavior. The
compiler correctness theorem will only apply to programs
that are well-behaved in this way.

Figure 7 shows one example rule of the safety judgment,
which, as for Cito, we define coinductively (hence the double
line), so that certain kinds of infinite derivations are possi-
ble, covering programs that may not terminate along some
nondeterministic paths.

4. Correct-by-Construction Facade Code
The next step on the road to assembly is to compile the
Gallina implementations produced by our Fiat refinements
into imperative Facade programs. We start by defining an
equivalence relation, ∼=, between the data types produced and
manipulated by our high-level set operations and by Facade
programs:

w ∈W ∼= SCA w l ∈ List W ∼= ADT(List l)
i ∈ SharpenedADT (FiniteSet W) ∼= ADT (Set (s ≈ i))

In summary, Gallina words are directly equivalent to Facade
words, while a value l of Gallina’s algebraic data type of
lists is equivalent to a Facade list ADT modeled by l . A
value i of a SharpenedADT (FiniteSet W) is equivalent to a
Facade finite-set ADT modeled by a set s related to i by the
implementation’s abstraction relation.

Armed with this notion of equivalence, we can phrase
compilation of Gallina terms as another refinement process,
living inside of Fiat and producing a Facade statement guar-
anteed to output a value equivalent to the original Gallina
term. Thus, given a term g , a precondition Pre expressing
our assumptions on the types of the function arguments, and
a postcondition Post expressing requirements on output, we
want to find a Facade statement p satisfying two conditions,
where the variables xi are the function formal parameters:

∀σ x1 ... xn. Pre σ x1 ... xn =⇒
(p,σ) ↓ ∧ (∀σ′. (σ, p) ⇓ σ′ =⇒ Post σ′ x1 ... xn)

7

The exact forms that Pre and Post take depend on the
number of parameters of the original specification S x1 ... xn
in the FiatL DSL:

Pre σ x1 ... xn ≡σ(y1) ≈ x1 ∧ ... ∧ σ(yn) ≈ xn

Post σ x1 ... xn ≡σ(r) ≈ Z x1 ... xn

where Z stands for an executable Gallina function. In practice,
this value is an implementation of S that has been synthesized
by the first part of the pipeline.

Compilation proceeds by iteratively decomposing the Gal-
lina term produced by the Fiat compiler, until parts become
simple enough to map directly to Facade values. Phrasing
compilation in terms of refinements allows compilation to
reuse all of the existing Fiat machinery to implement each
compilation step as an application of a refinement lemma,
picked from a database of verified compilation rules. Each
refinement lemma operates on a nondeterministic choice (or
pick) in a particular form σ σ’. This notation designates all
programs that:

• Are safe when started in states containing exactly the same
ADTs as σ and all the scalars in σ.
• For any such starting state, produce a final state containing

the same ADTs as σ′ and all the scalars in σ′.

Writing ∅[x → a] to denote an empty set of bindings
augmented with a single binding x → a, consider deriving a
compilation for a function that computes the absolute value
of a number a, specified using this notation as follows:

∅[x → a] ∅[r ← if a > 0 then a else −a]

Compilation can be reduced (with a generic if rule) to
producing three smaller programs: one for the condition a >

0, one for the true part a, and one for the false part −a:

ptest ← (∅[x → a] ∅[x → a, y → (a > 0)]);
ptrue ← (a > 0 → ∅[x → a, y → 1] ∅[r → a]);
pfalse ← (a ≤ 0 → ∅[x → a, y → 0] ∅[r → −a]);
ret (ptest; if cond = 0 then ptrue else pfalse)

Compiling each fragment further yields a final program

ret (y := x > 0; if y = 0 then r := x else r := 0 − x)

This particular form of pre- and postconditions on the
program fragments is designed to make it possible to guar-
antee that the resulting programs satisfy Facade’s sanity re-
quirements, and in particular the requirements preventing
one from overwriting or aliasing variables pointing to ADTs.
Thus, unlike scalars, uses of ADTs must be tracked care-
fully throughout program execution, marking the transition
from the purely functional world of Gallina programs to the
mutable one of Facade programs. Our choice of pre- and
postconditions leverages this distinction to put less stringent
requirements on how information about scalars flows through
the program, so that program fragments can easily discard
information about the scalar variables that appear in their
preconditions.

When a program is compiled into smaller fragments, it is
not always apparent which ADTs the eventual implementa-
tion of each fragment will use, as compilation might produce
an implementation that allocates new ADTs, or modifies or
removes existing ones. It is thus necessary to keep “holes” in
the pre- and postconditions of consecutive program fragments
– placeholders that connect the set of live ADTs and variables
at the end of the fragment to the ones at the beginning of the
next fragment. These placeholders are filled by unifying them
with the particular pre- and postcondition shapes imposed
by refinement lemmas, and as such can also serve to ease
compilation and lend more generality to existing compilation
refinements. As an example, consider the following specifi-
cation of a program that reads the head of a list and discards
the tail: ∅[x → List (hd :: tl)] ∅[y → hd]

This specification requires a Facade implementation to
both copy the head of the list to the y variable and deallocate
x before exiting. This operation is not one of the those
supported directly by the list ADT, but it can be broken
down into two smaller operations, by inserting a placeholder
via a very general refinement rule for breaking a Facade
computation into two steps:

p ←∅[x → List (hd :: tl)] 1 ;

q ← 1 ∅[y → hd];

ret (p; q)

At this point, searching a database of refinement lemmas
matching the form of the first fragment will yield a lemma
describing the semantics of the Pop() method of the linked-
list ADT, which might look like

∀ hd tl x y.
(σ[x → List (hd :: tl)] σ[y → hd, x → List tl])
⊇ ret (y := Pop(x))

Applying this refinement rule implicitly fills the place-
holder 1 with the term ∅[x → hd, y → List tl]; this change
propagates to q, making it easy then to refine the second
fragment into a call to the Delete() method of the list ADT.
Furthermore, if this type of program fragment shows up of-
ten in a particular domain, it is possible to add a specialized
lemma to recognize it and speed up compilation.

Refinement lemmas can be classified broadly into four
categories:

• low-level refinements that deal with refining language
constructs such as conditionals, copying values between
scalar variables, and introducing holes;
• refinements that handle calls to ADT methods;
• high-level refinements that compile complex language

constructs such as folds; and
• user-specified lemmas, which combine and extend other

refinements to achieve particular optimizations.

The third category, high-level compilation lemmas, yields
particularly interesting refinement examples. Our library

8

supports compiling folds, producing either words or ADTs,
into Facade’s while loops. As an example of user extension,
we chose to compile our folds producing pairs into loops
modifying two variables, to avoid the runtime expense of
manipulating boxed pair objects. The compilation lemma for
folds producing ADTs looks like:

∀ x r l acc Adt thead tis empty.
(σ[x → List l] σ[r → Adt (fold left loop l acc)])
⊇init ← (σ[x → List l] σ[x → List l, r → Adt acc]);

body ← (∀ acc hd tl. σ[r → Adt acc, thead → hd, x → tl]
 σ[r → Adt (loop acc hd), x → tl]);

ret (init;
tis empty := x.IsEmpty();
while (!tis empty) {

thead := x.Pop();
body;
tis empty := x.IsEmpty()};

x.Delete())

Adt designates an arbitrary ADT constructor; the first pick
produces a program that stores the starting accumulator of
the fold in r; the second pick produces a program that updates
the accumulator of the loop; the ∀ acc hd tl part indicates
that this pick is in fact a pick of a program that is safe and
computes the right values for any choices of acc, hd, and tl.
After applying this rule, the subprograms init and body can
be refined further, until arriving at a ret of a concrete Facade
program.

Compiling Fiat ADT Calls The Fiat and Facade specifi-
cations of the finite-set ADTs (shown in Figures 3 and 5)
closely mirror each other. Thus, the refinement proof in Sharp-
enedADT FiniteSetSpec allows a direct compilation of Fiat
method calls into corresponding Facade calls. This refinement
proof only holds for method calls on a concrete implemen-
tation state related via the abstraction relation to a particular
set. Since Coq lacks an abstraction theorem that would al-
low us to use parametricity to derive this result for free, we
have to add it as an assumption of the compilation lemma, as
demonstrated in:

∀ Ψ xs xw σ x l s r w,
s ≈ r ∧ Ψ(l) = AddSpec ∧ NoDup([xs, xw, x]) →
(σ[xs → s, xw→ w] σ[(x, xs) → r.Add(w)])
⊇ ret (x := call l(xs, xw))

We use the notation (x, y)→ e to reflect updating variables
x and y with the two components of pair e. The respective
hypotheses of the lemma assert that set s in the prestate can be
implemented by some internal representation state r of a finite-
set ADT implementation, that some function label l is present
in the context Ψ and is mapped to the predefined method spec
AddSpec, and that the three schematic Facade variables are
all distinct from each other. Our domain-specific refinement
tactics discharge those side conditions automatically.

Automation Much like the transition from mathematical
specifications to computational programs in Fiat, the compi-
lation from Fiat to Facade is meant to be fully automated.

We begin by constructing the nondeterministic choice of
a safe Facade program computing a value corresponding to
the mathematical specification provided by the user. We then
repeatedly decompose and refine that choice into smaller
program fragments, by applying a multitude of small decom-
position lemmas, akin to the rule for compiling conditionals
presented above. The decomposition process goes on until
we reach fragments whose specifications can be directly re-
lated to concrete Facade statements. If we ever encounter a
situation in which no compilation lemma applies, and which
does not seem further decomposable, we split the problem-
atic fragment into multiple consecutive fragments, replacing
ADTs and scalars with placeholders (for practical reasons,
our compiler stores known ADTs and scalars in two separate
maps), and try to refine these newly create fragments. The
definition of refinement guarantees that our compilation does
not compromise the safety or correctness of the program, as
the refinement process itself produces a proof trace relating
the final program to the original specification.

5. From Facade to Assembly
Having built a Facade program, we can now realize our goal
of generating verified assembly code. The basic process is to
compile Facade to Cito, which we then compile to Bedrock
using a compiler verified in prior work [Wang et al. 2014].

The biggest difference between Facade and Cito is their
notion of machine states. As mentioned above, Facade’s ma-
chine state is a partial mapping from variables to values
(either SCA or ADT), while Cito’s machine state consists of
two mappings, one (a total mapping) from variables to inte-
gers (possibly pointers), the other (a partial mapping) from
pointers to ADT values. In order to define the correctness
of the Facade-to-Cito compiler, firstly we need to define a
relation between these two machine states, to formalize the
notion that “a Cito state faithfully implements a Facade state.”
A relation σ ≈ (δ,µ) between Facade state σ and Cito state
(δ,µ) is defined as

(∀x , a. σ(x) = ADT(a)⇒ ∃w . δ(x) = w ∧ µ(w) = a) ∧
(∀x ,w . σ(x) = SCA(w)⇒ δ(x) = w) ∧
(∀w , a. µ(w) = a⇒ ∃!x . σ(x) = ADT(a) ∧ δ(x) = w)

This relation conveys three facts: (1) mappings contained
in σ are all covered by (δ,µ); (2) mappings contained in µ
are all covered by σ; (3) each ADT value in µ is referenced
by a unique variable in σ.

Fact (3) may appear deceptively similar to a requirement
that all allocated ADTs are reachable from the local vari-
ables of the current dynamic function call, but recall that
Facade employs a small-footprint style of semantics, where
unused state elements need not be mentioned explicitly in the
semantics.

When a Cito state implements a Facade state according to
the relation we have sketched, fact (2) guarantees that there

9

is no memory leak (memory that is unreachable from the
Facade state), and fact (3) guarantees that no two ADT values
in the Facade state will accidentally be implemented by the
same object in Cito’s heap (aliasing).

The correctness theorem of the Facade-to-Cito compiler
is a standard semantics-preservation theorem:

∀Σ, Σ′,σ. (Σ, t) ⇓C Σ′ ∧ σ ≈ Σ ∧ (σ, s) ↓F
⇒ ∃σ′. (σ, s) ⇓F σ′ ∧ σ′ ≈ Σ′.

Let s be the Facade source program and t be the Cito target
program generated by the compiler. We use subscripts “F”
and “C” to distinguish between the Facade and Cito versions
of the “runs-to” and “safe” judgments. This theorem says that
starting from equivalent states, whenever the target program
may terminate in a state, there is a matching source-program
execution, finishing in a related state. In other words, this
theorem states a refinement of the source program by the
target program.

After generating Cito programs, we rely on the preexisting
Cito-to-Bedrock compiler [Wang et al. 2014] to do all the
remaining translation. The attractive vertical and horizontal
compositionality properties of that compiler proof mean that
we can combine the Facade-to-Cito correctness theorem and
the Cito-to-Bedrock correctness theorem to get a Facade-
to-Bedrock correctness theorem, and the generated Bedrock
module can be linked with other Bedrock modules, fulfilling
each other’s imports.

The combined Facade-to-Bedrock compiler has type

∀P,Q. FModule(P,Q)→ BModule(P,Q),

The compiler is parameterized on a precondition P and
postcondition Q . FModule(P ,Q) is the compilation unit fed
to the compiler, which is a dependent record containing a
Facade program s and two proofs:

• When P holds, this program is safe to run: ∀σ. P(σ)⇒
(σ, s) ↓
• When this program finishes, the final state satisfies Q:
∀σ,σ′. (σ, s) ⇓ σ′ ∧ P(σ)⇒ Q(σ,σ′)

The compiler’s output, BModule(P,Q), is a Bedrock
verified module with P and Q as its specification (written in
Bedrock’s specification language, as in Figure 2d). From this
type signature, we may deduce that for any property (P,Q),
this compiler will faithfully translate a Facade program
satisfying (P ,Q) to a Bedrock program that satisfies (P ,Q).

6. Putting It All Together
The last steps of our development process follow past work
on Bedrock: we implemented the finite-set and list ADTs in
Bedrock’s C-like language with invariant annotations [Chli-
pala 2013] and proved the implementations correct using
the separation-logic proof automation [Malecha et al. 2014].
Now we may finish the derivation process for any FiatL spec,
taking the Bedrock module produced at the end of the last
section’s step and linking it with our ADT implementations

Description FiatL specification
Remove duplicates λ `. ��`��
Sum of all λ `. fold right (+) ` 0
Sum of all (unique) λ `. Fold (+) �`� 0
Filter < λ `, x . filter (λ y . y < x) `
Filter < (unique) λ `, x . ��`�− {y | y < x}�
Union (unique) λ `1, `2. ��`1� ∪ �`2��

Figure 8. Some of the examples we handle automatically

(compiled to assembly by Bedrock). This linking process
is not just syntactic but also semantic, checking for agree-
ment between the import and export specifications associated
to code labels by different modules. For instance, the final
Bedrock module for a FiatL program will import the finite-set
methods with particular specifications, while our manually
verified finite-set module exports the same methods, and link-
ing checks that the specs agree syntactically across those two
positions.

The result of linking is a closed assembly program, with
no more imports, to which applies the main functional-
correctness theorem of the Bedrock framework, based on
final specs like the one in Figure 2d. We may also run closed
programs directly.

Figure 8 summarizes the FiatL specifications that we have
experimented with. For each one, we derived a correct-by-
construction assembly program, automatically. Our imple-
mentation produces efficient, correct implementations of both
the list-based and set-based operations, returning either ma-
chine words or linked lists of machine words. All examples
are compiled into while loops and never resort to recursion.
The “Sum of all (unique)” test case inspired the running ex-
ample of Figure 2. In total, the formal compilation process
per example takes about 1 second to refine the high-level
specification, 1 minute to refine to Facade, and an extra 5
minutes to check the linking conditions.

Running our examples on real hardware is also straight-
forward, if a bit inconvenient because of inefficiencies in
Coq’s normalization of terms as large as ours. We wind up
with one Coq term standing for a closed Bedrock module,
and we normalize it to find the literal assembly code within,
in the process running all of our suite of compilers, linkers,
etc., inside Coq. The result is pretty-printed as a .s file and
compiled with the standard GNU toolchain.

As a concrete example, we compiled our running “Sum of
all (unique)” function example (to about 2500 lines of x86
assembly) and timed its execution on random input lists of
different lengths. The final code is somewhat inefficient, since
we currently use an unsorted-list representation of finite sets;
in the future, a more efficient verified implementation can
be dropped into our framework without changing any other
modules. Still, the extracted assembly code is reasonably
efficient on moderately sized inputs, taking (on an Intel Xeon
E5620 CPU at 2.4 GHz) about 10 ms to handle a length-1000
list, 200 ms for length 5000, and 600 ms for length 10,000.

10

7. Related Work
Deductive Synthesis Specware [Specware] and its prede-
cessors KIDS [Smith 1990] and DTRE [Blaine and Goldberg
1991] are deductive synthesis tools for deriving correct-by-
construction implementations of high-level specifications,
akin to Fiat. At each step, Specware checks the validity of
the refinement by generating Isabelle/HOL proof obligations
justifying each transformation. The result of these proved-
correct refinements is a program in MetaSlang, a functional,
ML-like language. Through a series of automated and quite
sophisticated transformations, these MetaSlang programs are
transformed into C code. In contrast to the automated compi-
lation from Gallina to Facade presented here, however, these
final steps are currently unverified, and these transformations
represent a key piece of Specware’s trusted code base, in
addition to whatever compiler is applied to the final C code.

More Automated Synthesis In contrast to the algorithmi-
cally complex software that Kestrel has synthesized including
families of garbage collectors [Pavlovic et al. 2010], SAT
solvers [Smith and Westfold 2008], and network protocols,
we envision the toolchain presented here being used to im-
plement specifications for algorithmically “simple” domains
that are amenable to automation. A number of domains have
been shown to have this property: Paige et al. [Paige and
Henglein 1987] demonstrate how efficient implementations
specified in terms of set operations can be synthesized [Paige
and Henglein 1987], for example. Computations specified
using query-like operations are another such domain. P2 [Ba-
tory et al. 1993] was a DSL extension to C that allowed users
to specify the container data structures implementing an it-
erator method for querying contents of the container. More
recently, Hawkins et al. [Hawkins et al. 2011] have shown
how to synthesize the implementations of abstract data types
specified by abstract relational descriptions supporting query
and update operations.

Program Extraction from Proof Assistants The program-
extraction mechanisms of Coq [Letouzey 2003] and other
proof assistants are used widely, such as in CompCert and in
the Ynot framework [Nanevski et al. 2008] for verifying
Haskell-style monadic Gallina programs and the Reflex
system [Ricketts et al. 2014] built on top of it for automated
verification of reactive programs. Our new transformation
pipeline with the first step chopped off is a starting point
for providing a similarly general kind of extraction, with
stronger formal guarantees and allowing the programmer
more flexibility to control which optimizations are applied.

Compiler Verification The best-known mechanically veri-
fied compiler is CompCert [Leroy 2006]. Its main theorem
requires that code only be linked with modules compiled
by the same version of CompCert, disallowing the sort of
cross-language linking that allows us to link Facade code
with Bedrock ADT implementations. Recent work [Stewart
et al. 2015] generalized the theorem to support separate and

cross-language compilation, though it has not yet been used
to do functional verification of an assembly program with
pieces compiled by different compilers. Variants of this twist
on compiler correctness have also motivated other recent
projects without mechanized proofs [Benton and Hur 2009;
Ahmed and Blume 2008, 2011].

A sometimes lighter-weight alternative to compiler veri-
fication is translation validation, where only particular com-
piler outputs are proved to preserve source-program behavior,
similarly to how our program derivations only prove theo-
rems about particular translations. For instance, one recent
project [Sewell et al. 2013] applied the approach in the con-
text of OS kernel verification. Translation validation may of-
ten work with out-of-the-box compilers, instead of new ones
built with formal verification in mind, though sophisticated
optimizations frequently require special compiler support.

Extensible Compilers Of the approaches that have been
suggested for making compilers extensible, the most rele-
vant to our work is XCert [Tatlock and Lerner 2010], which
extends CompCert with a verified execution engine for a
domain-specific language of program analyses and transfor-
mations, enforcing soundness by construction. XCert more
comprehensively addresses this sort of traditional C-compiler
optimization (e.g., based on dataflow analysis), compared to
the optimizations built into the Cito compiler [Wang et al.
2014], and those transformations are complementary to the
ones we perform from high-level specs and functional pro-
grams to imperative programs. Other extensible compilers
like xtc [Grimm 2006] and xoc [Cox et al. 2008] provide no
(formal or informal) soundness guarantees. The Lisp world
has a long and related tradition of extension via macros, gen-
erally without any connection to formal program-correctness
proofs, with the state of the art probably exemplified by
Racket’s extension API [Tobin-Hochstadt et al. 2011].

8. Conclusion
We have presented the first certified pipeline, implemented
within Coq, from specifications to assembly code that con-
structs machine-checked proofs that assembly functions im-
plement relational specifications. The stages of our pipeline
are extensible; programmers may add new compilation strate-
gies as refinement lemmas and tactics that apply them intel-
ligently. Nonetheless, such programmer extensions cannot
compromise the soundness of the system, thanks to pervasive
proof generation. Our case studies so far start from a modest
spec domain of expressions over lists and sets, and we plan
to explore scaling the approach up to more complex specs,
like the SQL-style queries from past work on Fiat [Delaware
et al. 2015].

11

References
A. Ahmed and M. Blume. Typed closure conversion preserves

observational equivalence. In Proc. ICFP, pages 157–168. ACM,
2008.

A. Ahmed and M. Blume. An equivalence-preserving CPS transla-
tion via multi-language semantics. In Proc. ICFP, pages 431–444.
ACM, 2011.

D. Batory, V. Singhal, M. Sirkin, and J. Thomas. Scalable software
libraries. In Proceedings of the 1st ACM SIGSOFT Symposium
on Foundations of Software Engineering. ACM, 1993.

N. Benton and C.-K. Hur. Biorthogonality, step-indexing and
compiler correctness. In Proc. ICFP, pages 97–108. ACM, 2009.

L. Blaine and A. Goldberg. DTRE – a semi-automatic transfor-
mation system. In Constructing Programs from Specifications,
pages 165–204. Elsevier, 1991.

A. Chlipala. Mostly-automated verification of low-level programs
in computational separation logic. In Proc. PLDI, pages 234–245.
ACM, 2011.

A. Chlipala. The Bedrock structured programming system: Combin-
ing generative metaprogramming and Hoare logic in an extensible
program verifier. In Proc. ICFP, pages 391–402. ACM, 2013.

R. Cox, T. Bergan, A. T. Clements, F. Kaashoek, and E. Kohler.
Xoc, an extension-oriented compiler for systems programming.
In Proc. ASPLOS, pages 244–254. ACM, 2008.

D. Delahaye. A tactic language for the system Coq. In Proc. LPAR,
pages 85–95. Springer-Verlag, 2000.

B. Delaware, C. Pit-Claudel, J. Gross, and A. Chlipala. Fiat:
Deductive synthesis of abstract data types in a proof assistant. In
Proc. POPL, 2015.

R. Grimm. Better extensibility through modular syntax. In Proc.
PLDI, pages 38–51. ACM, 2006.

P. Hawkins, A. Aiken, K. Fisher, M. Rinard, and M. Sagiv. Data
representation synthesis. In Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and
Implementation. ACM, 2011.

J. He, C. Hoare, and J. Sanders. Data refinement refined. In
B. Robinet and R. Wilhelm, editors, ESOP 86, volume 213 of
Lecture Notes in Computer Science, pages 187–196. Springer
Berlin Heidelberg, 1986.

C. Hoare. Proof of correctness of data representations. Acta
Informatica, 1(4):271–281, 1972.

X. Leroy. Formal certification of a compiler back-end or: program-
ming a compiler with a proof assistant. In Proc. POPL, pages
42–54. ACM, 2006.

P. Letouzey. A new extraction for Coq. In Proc. TYPES. Springer-
Verlag, 2003.

B. Liskov and S. Zilles. Programming with abstract data types. In
Symposium on Very High Level Languages, New York, NY, USA,
1974. ACM.

G. Malecha, A. Chlipala, and T. Braibant. Compositional computa-
tional reflection. In Proc. ITP, pages 374–389. Springer-Verlag,
2014.

A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau, and L. Birkedal.
Ynot: Dependent types for imperative programs. In Proc. ICFP,

pages 229–240. ACM, 2008.

R. Paige and F. Henglein. Mechanical translation of set theoretic
problem specifications into efficient RAM code – a case study.
J. Symb. Comput., 4(2):207–232, Oct. 1987. ISSN 0747-7171.
doi: 10.1016/S0747-7171(87)80066-4. URL http://dx.

doi.org/10.1016/S0747-7171(87)80066-4.

M. Parkinson and G. Bierman. Separation logic and abstraction. In
Proc. POPL, pages 247–258. ACM, 2005.

D. Pavlovic, P. Pepper, and D. R. Smith. Formal derivation of
concurrent garbage collectors. In Mathematics of Program
Construction, pages 353–376. Springer Berlin Heidelberg, 2010.

J. C. Reynolds. Separation logic: A logic for shared mutable data
structures. In Proc. LICS, pages 55–74. IEEE Computer Society,
2002.

D. Ricketts, V. Robert, D. Jang, Z. Tatlock, and S. Lerner. Automat-
ing formal proofs for reactive systems. In Proc. PLDI, pages
452–462. ACM, 2014.

T. A. L. Sewell, M. O. Myreen, and G. Klein. Translation validation
for a verified OS kernel. In Proc. PLDI, pages 471–482. ACM,
2013.

D. R. Smith. KIDS: A semi-automatic program development system.
In Client Resources on the Internet, IEEE Multimedia Systems
99, pages 302–307, 1990.

D. R. Smith and S. J. Westfold. Synthesis of propositional satisfia-
bility solvers, 2008.

Specware. http://www.kestrel.edu/home/prototypes/specware.html.

G. Stewart, L. Beringer, S. Cuellar, and A. W. Appel. Compositional
CompCert. In Proc. POPL. ACM, 2015.

Z. Tatlock and S. Lerner. Bringing extensibility to verified compilers.
In Proc. PLDI, pages 111–121. ACM, 2010.

S. Tobin-Hochstadt, V. St-Amour, R. Culpepper, M. Flatt, and
M. Felleisen. Languages as libraries. In Proc. PLDI, pages
132–141. ACM, 2011.

P. Wadler. Comprehending monads. In Mathematical Structures in
Computer Science, pages 61–78, 1992.

P. Wang, S. Cuellar, and A. Chlipala. Compiler verification meets
cross-language linking via data abstraction. In Proc. OOPSLA,
pages 675–690. ACM, 2014.

12

http://dx.doi.org/10.1016/S0747-7171(87)80066-4
http://dx.doi.org/10.1016/S0747-7171(87)80066-4
http://dx.doi.org/10.1016/S0747-7171(87)80066-4

	Introduction
	Correct-by-Construction Functional Code
	Bridging Gallina and Bedrock via Facade
	Correct-by-Construction Facade Code
	From Facade to Assembly
	Putting It All Together
	Related Work
	Conclusion

