
Automatic Test-Case Reduction in Proof1

Assistants: A Case Study in Coq2

Jason Gross �Â3

CSAIL, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA4

MIRI, USA5

Théo Zimmermann � Â6

Inria, Université de Paris, CNRS, IRIF, F-75013, Paris, France7

Miraya Poddar-Agrawal �8

Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202, USA9

Adam Chlipala �Â10

CSAIL, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA11

Abstract12

As the adoption of proof assistants increases, there is a need for efficiency in identifying, documenting,13

and fixing compatibility issues that arise from proof assistant evolution. We present the Coq Bug14

Minimizer, a tool for reproducing buggy behavior with minimal and standalone files, integrated with15

coqbot to trigger automatically on Coq reverse CI failures. Our tool eliminates the overhead of16

having to download, set up, compile, and then explore and understand large developments: enabling17

Coq developers to easily obtain modular test-case files for fast experimentation. In this paper, we18

describe insights about how test-case reduction is different in Coq than in traditional compilers.19

We expect that our insights will generalize to other proof assistants. We evaluate the Coq Bug20

Minimizer on over 150 CI failures. Our tool succeeds in reducing failures to smaller test cases in21

roughly 75% of the time. The minimizer produces a fully standalone test case 89% of the time, and22

it is on average about one-third the size of the original test. The average reduced test case compiles23

in 1.25 seconds, with 75% taking under half a second.24

2012 ACM Subject Classification Software and its engineering → Software evolution; Software and25

its engineering → Maintaining software; Software and its engineering → Compilers; Software and its26

engineering → Formal software verification27

Keywords and phrases debugging, automatic test-case reduction, Coq, bug minimizer28

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2329

Related Version Earlier : https://jasongross.github.io/papers/2015-coq-bug-minimizer.pdf [6]30

Supplementary Material https://figshare.com/s/60037cb0c9bbf464e68631

1 Introduction32

In the world of machine verification, the dream is to prove the correctness of every program.33

Projects such as Coq Coq Correct! [13] make significant progress towards this dream for34

even our most foundational tools: proof assistants themselves. However, large swathes35

of proof-assistant software—such as tactic languages, elaboration hints, and document36

managers—remain unproven, lacking even adequate test-suite coverage!37

As a solution to expanding the test-suite coverage for the proof assistant Coq, developers38

adopted “reverse” continuous integration (CI) [18, 10] wherein changes in Coq are tested39

against a crowdsourced suite of external Coq projects maintained by different teams in40

different repositories. In this manner, user-centric concerns are well addressed. To prevent41

the crowdsourced test suite from shrinking, when Coq evolves in a desired direction but42

breaks some external project in the process, developers of Coq will fix the compatibility43

© Jason Gross and Théo Zimmermann and Miraya Poddar-Agrawal and Adam Chlipala;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jgross@mit.edu
https://jasongross.github.io/
https://orcid.org/0000-0002-9427-4891
mailto:theo@irif.fr
https://www.theozimmermann.net
https://orcid.org/0000-0002-3580-8806
mailto:ragrawal@reed.edu
https://orcid.org/0000-0001-7617-9180
mailto:adamc@csail.mit.edu
http://adam.chlipala.net/
https://orcid.org/0000-0001-7085-9417
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://jasongross.github.io/papers/2015-coq-bug-minimizer.pdf
https://figshare.com/s/60037cb0c9bbf464e686
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Automatic Test-Case Reduction in Coq

issue in the external project. We believe that to facilitate the use of proof assistants in44

industry-scale projects, it is essential to make it easy to find, understand, and fix compatibility45

issues as the proof assistant continues to evolve.46

Since the external projects in the Coq test suite are large and intricate, debugging and47

fixing failures reported by the reverse CI is a time- and effort-intensive process for developers.48

They must perform many steps before beginning to understand and work on the bug. First,49

developers will tediously sit through the process of downloading, setting up, and compiling50

the external project. Then, they may have to take on the daunting task of figuring out the51

larger project context which is not even directly relevant to the bug!52

The current debugging process can be significantly optimized for developer experience.53

Additionally, the current process does not easily yield test cases to add to Coq’s internal test54

suite. Instead the test cases remain buried in external developments whereas we would like55

to bring bugs to the center! In order to improve the debugging process, we built the Coq56

Bug Minimizer1 which reproduces buggy behavior in minimal and standalone files.57

Typically, minimized files reduce the total number of lines of code involved in exhibiting58

buggy behavior by about a factor of three, making it significantly easier for developers to59

observe, play with, understand, and fix bugs. Furthermore, we have integrated the Coq Bug60

Minimizer with coqbot [19] to trigger automatically on reverse-CI failures, reducing the61

friction of building minimized files.62

Test-case reduction has already a rich literature [3]. However, it is focused mostly on63

traditional languages such as C, and even generic reduction techniques may not apply so64

well to proof assistants. In this paper, we share what we have learnt about where test-case65

reduction is harder and where it is easier in Coq than in traditional compilers, and describe66

how we got around the difficulties. Drawing on empirical results from nearly a year of use67

in Coq’s production CI system, we reflect on how effective our style of test-case reduction68

has been and where the biggest opportunities for improvement remain. We believe that our69

methods may be of interest for developers of other proof assistants who are also facing a70

tradeoff between enabling evolution and preserving stability, in a context of industrial use.71

For the mobile reader, Section 2 introduces a constructed example of test-case reduction in72

Coq, and articulates desiderata for test-case reduction in the proof-assistant setting. Section 373

details aspects of traditional-setting test-case reduction that are simpler or irrelevant in74

Coq. Then Sections 4, 5, 6, and 7 explore the four desiderata and describe the details of our75

solution to the more important challenges of each. Section 8 forays into the applicability of76

the Coq Bug Minimizer for bug reporter workflow as a secondary use case. Finally, Section 977

presents our deployment in Coq’s production CI, with analysis of how effectively different78

test cases were minimized; Section 10 describes connections to related work; and Section 1179

discusses our thoughts on the most worthwhile improvements to make to our tooling.80

2 Desiderata81

To add color to our picture, let’s begin with a constructed example of minimizing a reverse-CI82

failure. Our objective is to explore the space of file modifications that will aid human83

understanding of the bug. Consider the following Coq source file:84

Require Import UsefulTactics.85

Definition zero := 0. Definition one := 1.86

1 Available on GitHub in JasonGross/coq-tools

https://github.com/JasonGross/coq-tools

J. Gross and T. Zimmermann and M. Poddar-Agrawal and A. Chlipala 23:3

Definition two := 2. Definition three := 3.87

Lemma foo : forall x, x = zero -> S x = one.88

Proof. crush. Qed.89

Suppose the crush tactic triggered a new bug in Coq. The most obvious move is to find90

deletable sentences and delete them, producing a smaller file:91

Require Import UsefulTactics.92

Definition zero := 0. Definition one := 1.93

Lemma foo : forall x, x = zero -> S x = one.94

Proof. crush.95

The file still depends on an imported module not native to the Coq standard library. The96

next move is to inline this dependency, producing a standalone file:97

Module UsefulTactics.98

Ltac head expr := match expr with | ?f _ => head f | _ => expr end.99

Ltac head_hnf expr := let expr’ := eval hnf in expr in head expr’.100

Ltac crush := intros; subst; try reflexivity.101

End UsefulTactics.102

Import UsefulTactics.103

Definition zero := 0. Definition one := 1.104

Lemma foo : forall x, x = zero -> S x = one.105

Proof. crush.106

Now we may look for any more opportunities to delete lines, producing a standalone,107

reduced file:108

Ltac crush := intros; subst; try reflexivity.109

Definition zero := 0. Definition one := 1.110

Lemma foo : forall x, x = zero -> S x = one.111

Proof. crush.112

From the above process we can extrapolate desiderata for the Coq Bug Minimizer.113

1. Reproducing buggy behavior: Deciding when two source files indicate the same bug.114

Many reasonable file simplifications lead to incidental changes in error messages. The115

Coq Bug Minimizer must tradeoff between preserving specific details of error messages116

and aiding human understanding of the underlying bug.117

2. Minimal files: Exploring the space of program simplifications in a smart way with118

respect to constraints of the proof-assistant setting. Many research papers in the software-119

engineering community have been written on just this topic [5, 17, 2, 14, 16], but120

constraints in a proof-assistant setting are uncommon in conventional programming. For121

instance, highly automated Coq developments often have long compile times even for122

single files, so we may need to be more frugal in how many program variants we test.123

3. Standalone files: Creating standalone files that illuminate new test cases and can be124

added to Coq’s internal test suite. This is difficult in dependently typed languages with125

metaprogramming facilities such as Coq. For instance, eliminating needless dependencies126

in simply typed languages may be trivial, but dependently typed languages eliminate the127

distinction between runtime and compile time resulting in tight coupling between files.128

CVIT 2016

23:4 Automatic Test-Case Reduction in Coq

4. Smooth developer experience: Automatically finding which file triggered a bug, with129

which compilation settings, including path information to find dependencies. The Coq130

Bug Minimizer must work with the wide variety of build systems used in different Coq131

libraries.132

Achieving each desideratum posed interesting challenges, and required making several133

design choices. Before proceeding to share solutions to these challenges, we note the ways in134

which test-case reduction is simpler in the proof-assistant setting than in other settings.135

3 Simplifications of the Proof-Assistant Setting136

Classic delta debugging [16] is a technique in test-case reduction for traditional compilers. It137

employs binary search through program structure to find subprograms that can be removed138

while preserving properties relevant to triggering specific bugs for the chosen compiler. Coq’s139

lack of forward references permits a simpler method: first remove everything after the140

error-message-generating line, and then try removing the syntactic units beforehand in-order,141

one-at-a-time. Unlike in languages from Java to Haskell, where all functions in a file are142

considered mutually recursive, in Coq there should be no way for one error-message-generating143

line of a file to change behavior based on modifications to later lines. In this manner we144

reduce the number of “experiments” on program variants, which is especially useful when145

each program variant requires significant processing time as is often the case in Coq.146

Our empirical evaluation (Section 9) demonstrates that this strategy is adequately147

performant. We conjecture that the reason for this adequate performance is that dependency148

trees of Coq theorems and proofs tend to be relatively deep compared to the number of149

definitions and theorems in any single file. This hypothesis is borne out by the fact that our150

typical “minimal” test case tends to be only about a third the size of the total amount of151

code in all files in the dependency tree of the initial test case. If instead there were orders152

of magnitude more useless lines than true dependent lines, we expect that a binary-search153

strategy would be required for adequate performance.154

4 Reproducing Buggy Behavior155

How do we know modifications to source files are genuine simplifications that have not156

masked bugs? What does it mean to reproduce the “same” bug? We generate a file that157

succeeds on the previous version of Coq and continues to fail on the modified version of Coq,158

with the same error message that showed up in the reverse CI. However, the error message of159

the generated file does not need to be exactly the same as in the original file, so long as the160

reason for the error message is the same. Thus, we modify our goal to reproducing buggy161

behavior in place of reproducing the “same” bug.162

We apply the following relaxations in comparing error messages.163

1. Universe inconsistencies are how Coq prevents users from proving absurdity by assuming164

a “set of all sets.” The explanations of universe inconsistencies in error messages are165

sensitive to how many universes are floating around and in what order constraints were166

added. Rather than requiring output files to mimic the error messages exactly, we only167

require that they result in some universe inconsistency.168

2. Any two error messages about “forgotten universes” are considered matching, since these169

tend to arise only from very specific Coq internal errors.170

3. Usually differences in numbering, e.g. in universes or autogenerated identifiers, are171

incidental and are not treated as implying different error messages. One special case172

J. Gross and T. Zimmermann and M. Poddar-Agrawal and A. Chlipala 23:5

is lengths of universe instances, so we look for the text “Universe instance should have173

length” in the error message and only use number-insensitive comparison if this text is174

not found.175

4. We consider any error messages containing “Unsatisfied constraints: . . . (maybe a bugged176

tactic)” as equivalent, since related bugs are localized to one relatively small part of177

the Coq implementation, and small changes to a source file can modify constraints178

significantly.179

5. We also ignore filenames, line references, and word wrapping in comparing error messages.180

5 Minimal Files181

Test-case reduction is powerful in making long source files more comprehensible to developers.182

In addition to this, external projects in Coq can take minutes or hours to compile, so the183

edit-compile-test-debug loop is long. We have two additional goals to improve this workflow.184

1. Finding minimal test cases as fast as possible, given that experimenting with each program185

variant has long compilation time.186

2. Compilation of the test case in seconds or fractions of a second so that developers can187

fluidly try hypotheses for solutions.188

5.1 Making the Minimization Process Itself Fast189

In our goal to get the shortest reproducing test case as quickly as possible, it helps to first190

make any changes that might significantly speed up the execution time, and only after we’re191

done with all of the changes that might improve running time should we try to further192

minimize the file with changes that are unlikely to impact compile time.193

The slowest part of almost all Coq developments is proof scripts. Hence we attempt to194

remove proof scripts as early as possible. Since proof assistants check that proofs are valid,195

we cannot simply remove a proof, like we might remove a function body in a traditional196

programming language. However, most proof assistants have some mechanism for “giving197

up” on a proof or “trusting” the user, and Coq is no exception. Its mechanism involves any198

of Admitted, Admit Obligations, or the admit tactic. Replacing proof blocks with these199

commands, rather than just removing proof scripts, allows us to make much smaller and200

faster examples than might otherwise be possible.201

5.2 Finding Textually Smaller Test Cases202

The simplest function of the bug minimizer is to remove unneeded lines. As noted in the203

prior section, we try removing one syntactic unit at a time, moving backwards from the unit204

that triggered the error message.205

However, we can easily enough get stuck in local minima, when we remove single commands206

and check that bug behavior is unchanged. For instance, there may be an irrelevant lemma207

that we want to remove.208

Lemma irrelevant : two = 2.209

Proof. reflexivity. Qed.210

Since Coq forbids nested lemmas, removing statements one-at-a-time will not work, as the211

state212

Lemma irrelevant : two = 2.213

Proof. reflexivity.214

CVIT 2016

23:6 Automatic Test-Case Reduction in Coq

results in an error about nested proofs, if there is a theorem afterward.215

We instead group statements into definition blocks to be removed all at once. We get216

information about definitions by parsing the output of coqtop -emacs -time. This way, we217

can remove the lemma block all at once.218

We could in theory deal with more complicated nesting structure, for example trying to219

remove an entire section or module at a time. The delta tool [14] is in fact built around220

preprocessing the file into one that exposes nested structure clearly, then removing well-221

parenthesized blocks. However, removing statements, grouped into definitions as necessary,222

sufficies for removing time-consuming code.223

5.2.1 The Program Construct224

One Coq construct that does not fit neatly into this approach is Program, where a function225

definition is associated with following proofs of obligations related to dependent typing. We226

cannot just look for Program statements followed by Obligation blocks to remove all together,227

because Obligation blocks can be interleaved with other definitions. Luckily, we can replace228

any obligation block with a use of the Admit Obligations command, which admits all229

remaining obligations—and it happily handles any case with no remaining obligations, so we230

need not worry about introducing duplicate invocations.231

5.2.2 Empty Sections and Modules232

Removing statements one-at-a-time will not always be able to remove empty sections (nor233

empty Modules or Module Types). That is why we have a pass dedicated to removing empty234

sections, modules, and module types.235

5.2.3 Exporting Modules236

Coq’s features to import and export modules (e.g., including all definitions of one module237

inside another) can create some particularly thorny situations for statement-at-a-time shrink-238

ing. If we remove just an Import commands, then later commands fail because important239

identifiers are out-of-scope. If we remove just the definition of the imported module, then the240

Import fails. The solution is to merge these two commands, so that they become a candidate241

for removal together. We change Module commands into Module Export commands to this242

end. Often that change renders later Import commands redundant, so they are removed by243

later passes.244

5.2.4 Splitting Definitions245

One pass in the minimizer tries to replace traditional definitions with uses of the interactive246

proof mode, which is a first step toward admitting those proof bodies (i.e., postulating247

existence of identifiers rather than giving their definitions) in later steps.248

5.2.5 Early Removal of Unused Constants249

There are some likely-to-succeed steps that we try early on, which are superseded by removing250

each and every structured block one at a time but may result in faster minimization. The251

primary example of this sort of step is removing tactics, Variable and Context statements,252

and definitions which are not referred to at all after their definitions.253

J. Gross and T. Zimmermann and M. Poddar-Agrawal and A. Chlipala 23:7

5.2.6 Splitting Import and Exports254

It may be the case that users import modules that they never use, such as in Import255

unused1 used unused2. To allow eventual removal of unused1 and unused2 even when256

the Import used statement cannot be removed, we have a pass that attempts to split such257

statements into separate Import statements, resulting in Import unused1. Import used.258

Import unused2.259

5.3 Finding Test Cases That Coq Processes More Quickly260

We mentioned how admitting proofs is a very handy step to shrink files and get them261

processed more quickly. There are, however, a few gotchas to keep in mind.262

The first quirk is around transparency vs. opacity of lemma definitions; that is, whether263

the generated proof term is accessible to later definitions. Either choice (transparent vs.264

opaque) can break some developments. Marking a proof-mode definition opaque will break265

later definitions that unfold the definition and then perform further tactic-based surgery on it,266

while marking a proof-mode definition transparent could cause previously failing unfoldings267

to succeed. Therefore, we always try both styles of marking a lemma admitted.268

Some lemma proofs are declared as transparent rather than opaque, where later steps269

really do depend on their details. If those dependencies are too specific, then our shrinking270

heuristics are not going to work well. However, one common-enough case is where a later271

definition uses tactics to unfold an earlier definition, going on to use other tactics that may272

very well be able to adapt to changes in that definition. There are at least two different ways273

to mark a proof as admitted (Admitted vs. using a preexisting Axiom), which can switch up274

whether the associated definition is considered transparent or opaque.275

Additionally, we may want to admit some parts of the proof script without replacing all276

of it. Currently, we use a rather conservative heuristic: Coq has a tactical abstract that277

executes the tactic it is passed as an argument, making the resulting proof term opaque.278

Such subproofs should be able to be replaced with admit without changing the behavior of279

the proof script. The details are a little subtle, e.g. to avoid changing which section variables280

a proof depends on and thus changing its type outside the section.281

6 Standalone Files282

While the complex structure of external developments is a boon to stress-testing Coq, there283

are three reasons for wanting to reproduce bugs in standalone files.284

1. It is challenging for developers to understand the intricacies of external developments285

well enough to diagnose root causes.286

2. Build systems are necessary to handle multiple files, but using them adds unnecessary287

overhead in the debugging workflow.288

3. Intricate file-dependency structure complicates test-suite infrastructure, whereas having289

self-contained files results in a simpler test suite.290

Naïvely, the way to produce a standalone file is to linearize the dependency tree and291

combine the contents of all files. We saw an example of roughly this strategy in Section 2,292

and e.g. C compilers follow this strategy in preprocessing #include statements.293

Two difficulties arise when following this strategy in Coq:294

1. As in all languages that allow shadowing of global symbols, inlining files changes what295

names are available and hence may result in unintended changes of behavior. The de-296

pendent typing and metaprogramming facilities of Coq largely eliminate the distinction297

CVIT 2016

23:8 Automatic Test-Case Reduction in Coq

between runtime and compile time. As a result, we have to inline not just function298

declarations but also function bodies, and thus the problem of name resolution is com-299

paratively harder in Coq and similar languages than in those with simple types and300

without metaprogramming facilities. Furthermore, Coq has additional quirks around301

name resolution and (lack of) namespacing that have to be managed and worked around.302

2. Coq has a great deal of global state (e.g., notations, universe polymorphism, the default303

tactic mode) that changes the way sentences are interpreted. Because there is no way to304

isolate changes on this global state fully, there may not even be any linearization that305

reproduces the same behavior.306

6.1 Addressing Shadowing and Name Resolution307

Coq assigns names based on three components: the name and location of the file in which308

the identifier is defined, the module structure surrounding the identifier, and the final309

name. For example, the constant Coq.MSets.MSetPositive.PositiveSet.t is defined in310

the file MSets/MSetPositive.v, which is bound to Coq.MSets.MSetPositive, in the module311

PositiveSet, with the name t.312

If we were to inline this file into some other file bug.v, then the constant becomes313

bug.PositiveSet.t. We now have two choices: we can attempt to adjust the name of the314

constant on inlining, or we can adjust references to the constant.315

We combine these strategies to maximize the chance of succesfully inlining dependencies.316

First, as shown in the example in Section 2, we wrap the contents in a module whose name317

matches that of the file (in this case, we wrap the contents in Module MSetPositive). Fur-318

thermore, since users can refer to this constant as Coq.MSets.MSetPositive.PositiveSet.t,319

MSets.MSetPositive.PositiveSet.t, or MSetPositive.PositiveSet.t, we can wrap this320

module in further modules (Coq and MSets) and Export them to make this naming scheme321

available. Finally, because Coq forbids multiple modules with the same absolute kernel322

name, we must wrap the top-level module in yet another module, with a uniquly generated323

identifier. While this strategy is not perfect, running afoul of coq/coq#14587 for example,324

we try a couple of variations on this strategy, and very often one of them is adequate for325

reproducing buggy behavior.326

Second, we want to adjust references so that they still point at the same underlying object327

after inlining. Coq helpfully emits globalization files, which contain information about how328

Coq resolves almost all names in the file. Since Coq generates and installs these .glob files,329

we can use this information to transform both the names in the files we inline and the names330

that refer to constants in that file.331

However, we cannot just blindly update all names, because these .glob files are not332

perfectly accurate2 and are not complete3. Instead, we have found in practice that the most333

important names to resolve are those used in Require, Import, and Export statements.334

Require statements are sensitive to the searchpath flags (-Q and -R) passed to Coq. If we335

are inlining a file from Flocq into a file from VST, for example, the Requires in the Flocq file336

may not resolve to the same files on disk when compiling with the compiler flags that VST337

uses. Import and Export statements, while not dependent on searchpath flags to the same338

extent as Require, still seem empirically more likely to refer to potentially ambiguous names339

2 See coq/coq#15497 and coq/coq#14537.
3 They are missing information, for example, on tactic-name resolution and notation interpretation.

https://github.com/coq/coq/issues/14587
https://github.com/coq/coq/issues/15497
https://github.com/coq/coq/issues/14537

J. Gross and T. Zimmermann and M. Poddar-Agrawal and A. Chlipala 23:9

than most other statements. Hence we choose to resolve the names used in Require, Import,340

and Export statements when inlining, letting Coq determine all other name resolution.341

6.2 Addressing Nonlinearizability of Global State342

While shadowing and name resolution are mechanically resolvable at least in theory, the343

global state of Coq is sufficiently disorganized that we are not aware of any fully general344

technical means of linearizing Coq files.4 Hence our approach here consists of several partial345

workarounds.346

The most basic technique to attempt to isolate global state is to wrap the inlined file in a347

module. Most state not explicitly marked as Global does not escape the boundaries of the348

module it is defined inside. As we already use module wrapping to handle name resolution349

as discussed in Subsection 6.1, we already reap the benefits of this technique.350

Our only other technique is to try multiple linearizations and hope that one of them351

is adequate. We try inserting the file being inlined at the top of the file, as well as at the352

location where it is Required. In the future, we might also want to try moving Requires up353

higher in the file, to try to handle more situations.354

In Section 11, we discuss a few potential future avenues to better handling of global state.355

For example, we may want to more explicitly manage the state before and after inlining a356

file by taking advantange of Coq’s ability to print the current settings of flags with Print357

Options.358

6.3 Getting to Standalone Files Quickly359

We have a flag that allows inlining dependencies all at once, much like gcc inlines all360

#included files at once. While originally all files were minimized in that way, having to361

process such a large file slowed down minimization drastically, often resulting in minimization362

times of multiple weeks. As a result, the current default behavior is to minimize the current363

file before inlining other files.364

Futhermore, we want to ensure that we only inline files that are actually used. Much365

like we want to split Import and Export statements in Subsubsection 5.2.6, we also want to366

split Require statements, for example from Require unused1 used unused2. to Require367

unused1. Require used. Require unused2.368

Additionally, if the buggy behavior depends on a file only for its own dependencies, we369

prefer to inline the transitive dependency directly rather than needing to inline the entire370

intermediate file. To that end, we have a pass that performs the transitive closure of the371

dependency relation, inserting Require statements at the top of the file for all transitive372

dependencies of the file being minimized. Because we insert the Requires in dependency373

order, removing one statement at a time in reverse order will give us the minimal Requires374

needed to reproduce the error message. This strategy ensures that we only inline dependencies375

that are actually necessary.376

4 The Require command results in many side effects, including global setting of flags, opacity, and
argument status; behavior of auto with *; hint databases; global overwriting of Ltac definitions;
presence or absence of constants that change the behavior of built-in tactics such as tauto; and even
the presence of constants with certain kernel names can change shadowing behavior. Some of these
effects can even be set on the command-line, and at present there is no way to determine what flags
were used to compile a given installed file.

CVIT 2016

23:10 Automatic Test-Case Reduction in Coq

7 Smooth Developer Experience377

In order to analyze a specific source file, we need to take a few steps.378

1. Unpack and install both the succeeding and failing versions of Coq and corresponding379

developments.380

2. Replace the Coq binaries with wrappers that print out the arguments that Coq was called381

with, as well as COQPATH (an environment variable listing directories to be searched for382

imported modules) and the current directory.383

3. Run Coq on the succeeding and failing developments, ensuring that the version that384

should pass does in fact pass, and the version that should fail has a recognizable error385

message.386

4. Parse the build log to determine the buggy file name and the arguments to pass to Coq,387

using the extra logging introduced by our wrappers. This workflow means that we need388

not interface directly with varied build systems of different contributions on the CI.389

5. Run Coq on the buggy file.390

6. Parse the error message, ensuring that it matches with the error message from the build391

log. (See Section 4 for subtleties in that comparison)392

Again, the goal of the minimizer is to take a CI development that succeeds on the tip of393

the master branch and fails on a given pull request (PR), emitting a small, standalone file394

that succeeds on master and fails in the same way on the PR. In order to do so efficiently, we395

reuse the CI artifacts from Coq. We download the prebuilt versions of Coq from master and396

from the tip of the PR. From just these artifacts and the name of the failing CI development,397

we must assemble enough information to run the bug minimizer. We replicate Coq’s generic398

CI workflow to install Coq as well as any dependencies of this CI development, into different399

directories: one for the version of Coq expected to pass and another for the version of Coq400

expected to fail. We also reuse Coq’s generic CI workflow to figure out the error message401

and the failing file we want to minimize.402

Let us justify the extra information that our Coq wrapper programs log. We need COQPATH403

to ensure that we have the right search path for the dependencies of coqc, the command-line404

Coq compiler. We need the command-line arguments so that we know what flags to tell the405

bug minimizer to pass to coqc. Note that we must not change relative paths to absolute406

ones when passing arguments along to coqc, because the output of coqc is sensitive to the407

difference between relative and absolute paths, so changes can muddle tests that are meant408

to produce output files (and did in the past, for example with ci-elpi). We can locate the409

error message by looking for the last instance of File "f", line `, characters n-m:410

followed immediately by a line beginning with Error. (Note that warning messages also emit411

the File . . . line, but we do not want to catch warnings.) We look for the last instance of412

the wrapper debug printout information that points at the same file, though, so long as we413

were careful always to build single-threadedly, we could instead just look for the most recent414

debug printout before the error message.415

Given this information, we adjust the arguments so that we can tell the bug minimizer416

where the dependencies live both for the passing and failing versions of Coq. We then pass417

this information to the bug minimizer:418

the location of the file to be minimized;419

the log file containing the error message, which must match the error message that the420

minimizer believes the file produces;421

the locations of the coqc, coqtop, and coq_makefile programs for the tip of the PR;422

the location of the coqc program for the master branch;423

J. Gross and T. Zimmermann and M. Poddar-Agrawal and A. Chlipala 23:11

the locations of the dependencies for both the passing and failing versions of Coq, parsed424

from the command-line arguments and from walking the directories in COQPATH;425

any arguments to coqc that are neither naming dependency locations nor known to be426

both irrelevant to the processing of the file and counterproductive to the minimizer’s427

operation (such arguments are -batch, which applies only to coqtop; -time, which will428

only make logs of the minimizer much longer; and -noglob, -dump-glob, and -o, which429

interfere with the generation of outputs used by the minimizer).430

8 An Alternative Usage Mode431

Up to this point, we have talked about using the Coq Bug Minimizer exclusively to minimize432

reverse-CI failures for debugging faulty changes in Coq. Our tool can also be used to minimize433

test cases for newly found bugs in Coq. In this mode, a bug reporter can write a shell script434

that invokes a single version of Coq to produce buggy behavior on some Coq file, asking435

coqbot to produce a minimal example from this script. When running in this mode, we place436

an additional constraint on the minimizer that the proof script generating the error message437

should be left untouched, which allows bug reporters to write proof scripts such as438

some_tactic; lazymatch goal with439

| buggy_goal => fail 0 "bug remains"440

| [|- ?G] => fail 0 "bug disappeared!" G end.441

to customize the desired reproducing case, trusting that the entire file will not be minimized442

to something silly like Goal False. fail 0 "bug remains".443

9 Integration in Coq’s CI and Evaluation of Results444

9.1 Triggering the Minimizer445

The Coq project uses a custom, multi-task bot to automate everyday tasks, including446

triggering CI and reporting its results to the GitHub repository [19]. We have extended447

this bot to automatically propose and manage the minimization of failing test cases. The448

bot posts a comment to propose to run minimization when a PR has passed Coq’s internal449

test suite but has failures with external projects, and these external projects have built450

successfully on the base commit (on the master branch).451

If someone answers with a comment to trigger minimization, then the bot prepares a452

branch with all the information needed by the minimizer and pushes this branch to an453

external repository dedicated to running the minimizer. This triggers a GitHub Action454

workflow which will proceed with the minimization process. GitHub Action jobs have a455

6-hour timeout, so by the limit, the bot answers back with the results of the minimization456

process. If the minimization was stopped because of the timeout, then the bot automatically457

restarts it by reusing the file obtained at the previous step.458

9.2 Research Questions459

To evaluate the usefulness of our bug minimizer, we investigate several research questions:460

RQ1: How often does the minimizer successfully produce a reduced test case from the CI461

failures it was triggered on?462

RQ2: How often is this reduced test case fully standalone (no dependencies other than Coq’s463

standard library)?464

CVIT 2016

23:12 Automatic Test-Case Reduction in Coq

RQ3: How long does it take to produce such reduced test cases?465

RQ4: What is the size of the reduced cases?466

RQ5: How long do the reduced cases take to run?467

RQ6: What is the amount of code reduction?468

9.3 Data Collection and Analysis469

To support reproducing the results, we provide our data collection and analysis code (as a470

Jupyter notebook) and our dataset (as a CSV file) in the supplementary materials.471

We retrieve the runs of the bug minimizer by looking for PRs in the Coq GitHub repository472

with the words “coqbot ci minimize”, and we fetch all comments from the bot (timestamp473

and body text) from these PRs using GitHub’s GraphQL API. We exclude PRs opened474

by the first author, as most of these PRs were for testing the minimizer integration and475

debugging issues. When the minimizer is triggered, the bot answers with a comment “I have476

initiated minimization . . . ” or “I am now running minimization . . . ”, providing the list of477

projects on which it is being run. Then, when it finishes minimizing a project, it produces a478

comment with the minimized file. This file starts with header comments containing useful479

information about the minimization process. The comment may also contain “interrupted by480

timeout, being automatically continued” if the minimization process timed out and has to481

be restarted to go further, which the bot automatically does. We ignore these comments,482

only looking for final reduction outputs. Finally, the bot posts a comment starting with483

“Error: Could not minimize file” when it was not able to minimize the requested failure, for484

instance, because it could not reproduce it or could not reproduce the successful run on the485

base branch.486

We match comments indicating the start of the minimization with comments indicating487

the end of it, using these two comments to determine if the minimizer was able to produce a488

reduced test case, find how long it took, and answer our other research questions. To avoid489

double-counting multiple runs on the same CI failure, we only look at the first bug-minimizer490

trigger on a given PR and a given project.491

9.4 Results492

9.4.1 RQ1: How often does the minimizer produce a reduced test493

case?494

Looking only at the first minimization runs for a given PR and project, we have identified495

191 runs on 51 PRs (very often, several minimization runs are started in the same PR on496

different projects). On these 191 runs, 75% succeeded in producing reduced test cases. We497

count as failed runs the ones where the bot reported “Error: Could not minimize file”, the498

ones where we could not find a comment marking the end of minimization, and the ones499

where the bot answered with a minimized file but this file was not actually reduced from the500

initial test case (which we can detect from the header comments).501

There were 5 runs for which we found no comment marking the end of minimization.502

By manually looking at them, we have determined that 4 out of 5 were caught in infinite503

loops and had to be canceled manually. Loops can arise when the 6-hour timeout of the504

minimization process is not enough to make any new progress and thus the minimization505

gets stuck without ever reaching its end. Typical circumstances are when testing out a single506

change takes over 20 seconds, since we only have enough time to compile a 20-second-long507

J. Gross and T. Zimmermann and M. Poddar-Agrawal and A. Chlipala 23:13

file about a thousand times in six hours. The last case of our 5 seems to be coqbot having508

failed to post the comment marking the end of the minimization process.509

There were 19 runs that concluded with an explicit “Error: could not minimize file”510

comment. These errors are often due to issues downloading CI artifacts (9 runs), for instance511

because the corresponding base CI jobs have been skipped or the CI artifacts have expired.512

Runs concluding with errors can also happen because of bugs in Coq or in the tested projects’513

build infrastructure that prevent minimization. Virtually all these issues were reported, and514

most of them are already fixed. For instance, the MetaCoq project alone was responsible for515

5 failures because of issues in its build system.516

Finally, there were 23 runs ending with comments reporting on supposedly minimized517

files but where (from the header comments or their absence thereof) we can conclude that518

the minimization process failed to start properly (e.g., because it could not reproduce the519

error message). Most of these problems were related to error-message parsing, namespace520

management, or similar issues that have been fixed by making the bug minimizer more robust521

to them (see Section 4 to Section 6). A few of these issues have been noted but not yet fixed.522

Finally, a few of these failed runs were due to the minimizer being misused or called on a523

project that had failed for a reason that was unrelated to the PR.524

The accompanying notebook contains specific comments for each of the failed runs.525

9.4.2 RQ2: How often is this reduced test case fully standalone?526

We consider that a reduced test case will be most useful if any dependency beyond Coq’s527

standard library was successfully inlined, leaving it possible to run the reduced test case528

without needing to import any additional dependency. As a result, it is more likely that the529

test case can be added to Coq’s test suite.530

To measure how often the reduced test case is standalone, we rely on the minimizer531

recording when it failed to inline a dependency in the header comments of the minimized532

file. This feature was only added recently, so we only perform this measurement on the533

47 successful runs of the minimizer that had this information available. On these 47 runs,534

there were only 5 failures to inline dependencies fully, i.e., the minimizer produced a fully535

standalone file in 89% of the cases.536

Looking at the 5 failures to inline dependencies, we observe several types of reasons.537

One case was related to robustness to changing error messages, one case was related to a538

build-system issue in the project being minimized, and 3 cases were due to a common issue539

blocking attempts at all inlining methods. All of these issues have been fixed since then.540

9.4.3 RQ3: How long does it take to produce such reduced test cases?541

We compute the duration of minimization as the time delta between the start and the end542

comments. This method overapproximates the actual time spent in the minimization process,543

since it also includes time setting up a VM and possibly waiting in the queue for an available544

runner. We can look at this duration for both successful and failed runs.545

For failed runs, we observe that the average duration for the minimization to conclude is546

5 minutes (306 seconds) and that the maximum duration is 15 minutes (890 seconds).547

For successful runs, we observe more variety. The minimum duration is 4 minutes (232548

seconds), the maximum duration is 20 hours (73072 seconds), and the average is 104 minutes549

(6238 seconds). 50% of the successful runs finish in under 20 minutes (1218 seconds), and550

80% finish in under 140 minutes (8396 seconds). This number is still reasonable compared to551

the time that contributors routinely spend waiting for the results of Coq’s CI [18].552

CVIT 2016

23:14 Automatic Test-Case Reduction in Coq

9.4.4 RQ4: What is the size of the reduced cases?553

For the last three questions, we focus mainly on the 42 recent minimization runs that are554

known to have produced standalone files.555

The shorter the reduced test case, the more useful it is: it can help developers understand556

the problem more quickly, and it makes it more likely that it will be added to Coq’s test557

suite. Here again, there is some variety in the size of the reduced cases (counted in number558

of lines). The average size is 270 lines, and the maximum size is 2648 lines. However, 25% of559

the reduced cases are under 39 lines, 50% are under 114 lines, and 75% are under 262 lines.560

Results on the full set of 144 successful mininimization runs are of the same order of561

magnitude, with an average at 367 lines and a maximum size of 3804 lines.562

Developers have the option to perform additional minimization manually and restart the563

automatic minimization process on their manually reduced cases, which can help obtain even564

more reduced cases, but we have not evaluated this feature quantitatively.565

9.4.5 RQ5: How long do the reduced cases take to run?566

Following a recent addition, the minimizer has reported the expected coqc compile time as567

part of the header comments in the minimized file. Our recent 42 standalone cases all had568

this field available. We observe that the reduced cases take on average 1.25 seconds to run,569

although 75% of them take under half-a-second, while the maximum time is 26.5 seconds.570

9.4.6 RQ6: What is the amount of code reduction?571

To compute how much code reduction there was, we use data that the minimizer records572

about each minimization step (how many lines it started from and how many lines it ended up573

with). These numbers go up at times because of the process of inlining external dependencies.574

On the other hand, dependencies are only inlined if they could not simply be removed, so575

these numbers do not include the size of the files that were previously imported but did not576

need to be inlined during the minimization process.577

We aggregate these numbers by simply taking the sum of the differences in line count578

at the beginning and the end of each minimization step. We compute the amount of code579

reduction by taking the ratio of the final size over the total test-case size, defined as being the580

sum of the final size and the total number of removed lines. We obtain an average figure of581

31%, which means that the final test-case size is on average one-third the size of the original582

test (including the dependencies that actually matter for the test case).583

If we compute the size difference only looking at the initial file we started from and584

the final file we obtained, without accounting for the inlined dependencies, then we get an585

average ratio of 50%, which means that the final file is on average half the size of the file we586

started from. Note that because of dependency inlining, nothing prevents the reduced test587

case from being longer than the file we started from, which does happen in 6 out of 42 cases.588

If we look only at the 36 cases for which there was some code reduction, we get that the589

average reduction is by a factor of 4 to 5. If we look only at the 6 cases for which there was590

code expansion, we get that the average expansion is by a factor of 2.591

9.5 Limitations of our Evaluation592

Evaluating a bug minimizer for a proof assistant such as Coq is difficult because there is593

no preexisting benchmark that it could be run on. In this paper, we have decided to take594

J. Gross and T. Zimmermann and M. Poddar-Agrawal and A. Chlipala 23:15

advantage of the integration of our minimizer in the CI infrastructure of Coq to evaluate it595

on real use cases where Coq developers have felt the need for it.596

While we have taken steps to ensure that the evaluation is as unbiased as possible (such597

as not using reruns of the minimization on the same project in the same PR), our evaluation598

is still limited by our choice to use real use cases. In particular, it should be noted that our599

evaluation results are not obtained on a fixed version of the minimizer. On the contrary,600

the minimizer has evolved (and is still evolving) in reaction to the very same cases on601

which we have evaluated it. Since we always account only for first runs, many cases where602

the minimizer has been counted as failing have been eventually fixed and would result in603

successful runs today. Subsequent runs on other projects or other PRs may have succeeded604

thanks to earlier fixes.605

Other limitations are that our computation of the minimization duration is an overap-606

proximation that also includes the time for things such as setting up a VM to run the process,607

and that our evaluation of several research questions is based only on a subset of recent608

minimizer runs.609

Due to all these limitations, our evaluation should only be understood as demonstrating610

the feasibility of our approach and the usefulness of its application to the development of Coq.611

However, it should not be understood as a basis that future versions of the minimizer, or612

alternative minimizers, can compare to, since today’s version would already obtain different613

results if it were rerun on all these cases.614

10 Related Work615

Our work is at the crossing of two research areas: research on debugging techniques, which616

is a subdomain of software-engineering research, and research on proof assistants.617

Debugging is a largely explored topic, but mostly with a focus on more mainstream and618

less formal languages than Coq. In this research domain, test-case-reduction techniques619

have been studied for standard programming languages and compilers [3]. There are two620

types of approaches that have been proposed. First, there are generic approaches that are621

supposed to work for any programming language, by using structure information on the622

program being reduced. Examples include delta debugging [16] but also the generalized623

tree-reduction algorithm [7] and the syntax-guided Perses tool [7]. These generic techniques624

would not be likely to work well for Coq programs without careful adaptation, because many625

Coq programs can be considered syntactically valid even if completely nonsensical. For626

instance, we have already mentioned the issue with removing a Qed statement at the end of a627

tactic-based proof. Despite breaking a semantic block of code, this change does not actually628

produce a syntactically invalid Coq program.629

Second, there are programming-language-specific approaches, which take advantage of630

specific knowledge to make the test reduction more performant. Our own work is related to631

this second category, where most tools focus on mainstream languages like C. Some are even632

dedicated to reducing the output of specific test-generation frameworks such as Csmith [12].633

However, work on generating many diverse test cases from nothing has complementary634

value. Csmith [15] has an effective algorithm based on knowledge of C semantics, to provoke635

undefined behavior. Techniques like equivalence modulo inputs [9] find compiler bugs via636

differential testing, where a compiler is run on programs that are known to have the same637

semantics. Perhaps this generative approach would also be useful for proof assistants,638

composed fruitfully with test-case reduction as we have presented.639

Finally, the literature has identified the issue of slippage in test reduction [4, 8], which is640

CVIT 2016

23:16 Automatic Test-Case Reduction in Coq

when the initial and reduced cases produce different compiler bugs. This challenge was one641

of the main ones we had to account for in designing our bug minimizer (see Section 4).642

Proof-assistant ecosystems were already no stranger to testing techniques. For instance,643

Isabelle/HOL’s Nitpick [1] uses Boolean satisfiability to find theorem counterexamples.644

QuickChick [11] does random test generation to try to falsify Coq theorems. These tools are645

handy to save users from investing time in trying to prove false theorems. Testing-based646

approaches to debugging proof assistants themselves are a complementary topic.647

11 Future Work648

We were pleasantly surprised to find that several “shortcuts” in the logistics behind the649

minimizer led to good results empirically, but some of these may be worth revisiting to650

improve results even more. In various places, we use workarounds (like .glob files) to avoid651

integrating a proper Coq parser, but there would be advantages like being able to remove652

specific fields from record types. We remove single commands at a time, rather than removing653

entire well-balanced command blocks, which probably costs us in minimization time.654

A broader opportunity is finding related groups of commands that need to be removed655

together, to avoid changing the error message. For instance, we might want to move a lemma656

out of a module, to the top level of a file. Removing the commands that open and close657

the module might suffice, even if removing either one alone disturbs the error message. A658

general-enough version of this process could replace many specific passes.659

One remaining aggravation is proper handling of lemma proofs within sections, where the660

details of the lemma proof influence which section variables are kept in the lemma’s type.661

We could use the Set Suggest Proof Using command to insert Proof using clauses.662

As mentioned in Subsection 6.2, we would like to improve the ability of the minimizer663

to linearize dependency trees and handle Coq’s global state. We could, for example, print664

out the full table of flag settings at a particular point, reset them to the initial values before665

inlining a file, and then restore them after inlining. To fully handle global state, we would666

need some way to reconstruct the command-line flags used to compile installed files.667

There are further-out ideas that could speed minimization significantly but might require668

significant modifications to Coq itself. Incremental compilation would be helpful, to save us669

from rerunning long proof scripts every time we change single lines below them. Minimizing670

multiple files in parallel, rather than only inlining files, would allow us to take advantage of671

multicore execution within single minimization jobs.672

References673

1 Jasmin Christian Blanchette and Tobias Nipkow. Nitpick: A counterexample generator for674

higher-order logic based on a relational model finder. In Matt Kaufmann and Lawrence C.675

Paulson, editors, Interactive Theorem Proving, pages 131–146, Berlin, Heidelberg, 2010.676

Springer Berlin Heidelberg. doi:10.1007/978-3-642-14052-5_11.677

2 Martin Burger, Karsten Lehmann, and Andreas Zeller. Automated debugging in Eclipse. In678

Companion to the 20th Annual ACM SIGPLAN Conference on Object-Oriented Programming,679

Systems, Languages, and Applications, OOPSLA ’05, pages 184–185, New York, NY, USA,680

2005. Association for Computing Machinery. doi:10.1145/1094855.1094926.681

3 Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu Zhang, Dan Hao, and682

Lu Zhang. A survey of compiler testing. ACM Comput. Surv., 53(1), February 2020. doi:683

10.1145/3363562.684

4 Yang Chen, Alex Groce, Chaoqiang Zhang, Weng-Keen Wong, Xiaoli Fern, Eric Eide, and685

John Regehr. Taming compiler fuzzers. In Proceedings of the 34th ACM SIGPLAN Conference686

https://doi.org/10.1007/978-3-642-14052-5_11
https://doi.org/10.1145/1094855.1094926
https://doi.org/10.1145/3363562
https://doi.org/10.1145/3363562
https://doi.org/10.1145/3363562

J. Gross and T. Zimmermann and M. Poddar-Agrawal and A. Chlipala 23:17

on Programming Language Design and Implementation, PLDI ’13, pages 197–208, New York,687

NY, USA, 2013. Association for Computing Machinery. doi:10.1145/2491956.2462173.688

5 Holger Cleve and Andreas Zeller. Finding failure causes through automated testing. In Mireille689

Ducassé, editor, Proceedings of the Fourth International Workshop on Automated Debugging,690

AADEBUG 2000, Munich, Germany, August 28-30th, 2000, 2000. arXiv:cs/0012009.691

6 Jason Gross. Coq bug minimizer, January 2015. Presented at The First International692

Workshop on Coq for PL (CoqPL’15). URL: https://jasongross.github.io/papers/693

2015-coq-bug-minimizer.pdf.694

7 Satia Herfert, Jibesh Patra, and Michael Pradel. Automatically reducing tree-structured695

test inputs. In Proceedings of the 32nd IEEE/ACM International Conference on Automated696

Software Engineering, ASE 2017, pages 861–871, Urbana-Champaign, IL, USA, 2017. IEEE697

Press. doi:10.1109/ase.2017.8115697.698

8 Josie Holmes, Alex Groce, and Mohammad Amin Alipour. Mitigating (and exploiting) test699

reduction slippage. In Proceedings of the 7th International Workshop on Automating Test700

Case Design, Selection, and Evaluation, A-TEST 2016, pages 66–69, New York, NY, USA,701

2016. Association for Computing Machinery. doi:10.1145/2994291.2994301.702

9 Vu Le, Mehrdad Afshari, and Zhendong Su. Compiler validation via equivalence modulo703

inputs. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language704

Design and Implementation, PLDI ’14, pages 216–226, New York, NY, USA, 2014. Association705

for Computing Machinery. doi:10.1145/2594291.2594334.706

10 Lina Ochoa, Thomas Degueule, and Jean-Rémy Falleri. BreakBot: Analyzing the impact of707

breaking changes to assist library evolution. In 44th IEEE/ACM International Conference on708

Software Engineering: New Ideas and Emerging Results, ICSE (NIER) 2022. IEEE, 2022.709

11 Zoe Paraskevopoulou, Cătălin Hriţcu, Maxime Dénès, Leonidas Lampropoulos, and Ben-710

jamin C. Pierce. Foundational property-based testing. In ITP 2015 - 6th conference on711

Interactive Theorem Proving, volume 9236 of Lecture Notes in Computer Science, Nan-712

jing, China, August 2015. Springer. URL: https://hal.inria.fr/hal-01162898, doi:713

10.1007/978-3-319-22102-1_22.714

12 John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun Yang. Test-case715

reduction for C compiler bugs. In Proceedings of the 33rd ACM SIGPLAN Conference on716

Programming Language Design and Implementation, PLDI ’12, pages 335–346, New York, NY,717

USA, 2012. Association for Computing Machinery. doi:10.1145/2254064.2254104.718

13 Matthieu Sozeau, Simon Boulier, Yannick Forster, Nicolas Tabareau, and Théo Winterhalter.719

Coq Coq Correct! verification of type checking and erasure for Coq, in Coq. Proc. ACM720

Program. Lang., 4(POPL), December 2019. doi:10.1145/3371076.721

14 Daniel S. Wilkerson and Scott McPeak. delta - delta assists you in minimizing “interesting”722

files subject to a test of their interestingness, February 2006. Presented at CodeCon 2006.723

URL: https://github.com/dsw/delta.724

15 Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and understanding bugs in C725

compilers. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language726

Design and Implementation, PLDI ’11, pages 283–294, New York, NY, USA, 2011. Association727

for Computing Machinery. doi:10.1145/1993498.1993532.728

16 Andreas Zeller. Isolating cause-effect chains from computer programs. In Proceedings of729

the 10th ACM SIGSOFT Symposium on Foundations of Software Engineering, SIGSOFT730

’02/FSE-10, pages 1–10, New York, NY, USA, 2002. Association for Computing Machinery.731

doi:10.1145/587051.587053.732

17 Andreas Zeller. Why Programs Fail: A Guide to Systematic Debugging. Elsevier, 2009.733

18 Théo Zimmermann. Challenges in the collaborative evolution of a proof language and its734

ecosystem. PhD thesis, Université de Paris, 2019. URL: https://hal.inria.fr/tel-02451322.735

19 Théo Zimmermann, Julien Coolen, Jason Gross, Pierre-Marie Pédrot, and Gaëtan Gilbert.736

Extending the team with a project-specific bot. working paper, December 2021. URL:737

https://hal.inria.fr/hal-03479327.738

CVIT 2016

https://doi.org/10.1145/2491956.2462173
http://arxiv.org/abs/cs/0012009
https://coqpl.cs.washington.edu/2014/07/31/
https://coqpl.cs.washington.edu/2014/07/31/
https://coqpl.cs.washington.edu/2014/07/31/
https://jasongross.github.io/papers/2015-coq-bug-minimizer.pdf
https://jasongross.github.io/papers/2015-coq-bug-minimizer.pdf
https://jasongross.github.io/papers/2015-coq-bug-minimizer.pdf
https://doi.org/10.1109/ase.2017.8115697
https://doi.org/10.1145/2994291.2994301
https://doi.org/10.1145/2594291.2594334
https://hal.inria.fr/hal-01162898
https://doi.org/10.1007/978-3-319-22102-1_22
https://doi.org/10.1007/978-3-319-22102-1_22
https://doi.org/10.1007/978-3-319-22102-1_22
https://doi.org/10.1145/2254064.2254104
https://doi.org/10.1145/3371076
https://web.archive.org/web/20071224085116/http://www.codecon.org/2006/program.html
https://github.com/dsw/delta
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/587051.587053
https://hal.inria.fr/tel-02451322
https://hal.inria.fr/hal-03479327

	1 Introduction
	2 Desiderata
	3 Simplifications of the Proof-Assistant Setting
	4 Reproducing Buggy Behavior
	5 Minimal Files
	5.1 Making the Minimization Process Itself Fast
	5.2 Finding Textually Smaller Test Cases
	5.2.1 The Program Construct
	5.2.2 Empty Sections and Modules
	5.2.3 Exporting Modules
	5.2.4 Splitting Definitions
	5.2.5 Early Removal of Unused Constants
	5.2.6 Splitting Import and Exports

	5.3 Finding Test Cases That Coq Processes More Quickly

	6 Standalone Files
	6.1 Addressing Shadowing and Name Resolution
	6.2 Addressing Nonlinearizability of Global State
	6.3 Getting to Standalone Files Quickly

	7 Smooth Developer Experience
	8 An Alternative Usage Mode
	9 Integration in Coq's CI and Evaluation of Results
	9.1 Triggering the Minimizer
	9.2 Research Questions
	9.3 Data Collection and Analysis
	9.4 Results
	9.4.1 RQ1: How often does the minimizer produce a reduced test case?
	9.4.2 RQ2: How often is this reduced test case fully standalone?
	9.4.3 RQ3: How long does it take to produce such reduced test cases?
	9.4.4 RQ4: What is the size of the reduced cases?
	9.4.5 RQ5: How long do the reduced cases take to run?
	9.4.6 RQ6: What is the amount of code reduction?

	9.5 Limitations of our Evaluation

	10 Related Work
	11 Future Work

