
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1

Accelerating Verified-Compiler Development with a Verified
Rewriting Engine

ANONYMOUS AUTHOR(S)

Compilers are a prime target for formal verification, since compiler bugs invalidate higher-level correctness
guarantees, but compiler changes may become more labor-intensive to implement, if they must come with
proof patches. One appealing approach is to present compilers as sets of algebraic rewrite rules, which a generic
engine can apply efficiently. Now each rewrite rule can be proved separately, with no need to revisit past proofs
for other parts of the compiler. We present the first realization of this idea, in the form of a framework for the
Coq proof assistant. Our new Coq command takes normal proved theorems and combines them automatically
into fast compilers with proofs. We applied our framework to improve the Fiat Cryptography toolchain for
generating cryptographic arithmetic, producing an extracted command-line compiler that is about 1000×
faster while actually featuring simpler compiler-specific proofs.

1 INTRODUCTION
Formally verified compilers like CompCert [Leroy 2009] and CakeML [Kumar et al. 2014] are success
stories for proof assistants, helping close a trust gap for one of the most important categories
of software infrastructure. A popular compiler cannot afford to stay still; developers will add
new backends, new language features, and better optimizations. Proofs must be adjusted as these
improvements arrive. It makes sense that the author of a new piece of compiler code must prove its
correctness, but ideally there would be no need to revisit old proofs. There has been limited work,
though, on avoiding that kind of coupling. Tatlock and Lerner [2010] demonstrated a streamlined
way to extend CompCert with new verified optimizations driven by dataflow analysis, but we are
not aware of past work that supports easy extension for compilers from functional languages to C
code. We present our new work targeting that sort of compilation.
One strategy for writing compilers modularly is to exercise foresight in designing a core that

will change very rarely, such that feature iteration happens outside the core. Specifically, phrasing
the compiler in terms of rewrite rules allows clean abstractions and conceptual boundaries [Hickey
and Nogin 2006]. Then, most desired iteration on the compiler can be achieved through iteration
on the rewrite rules.
It is surprisingly difficult to realize this modular approach with good performance. Verified

compilers can either be proof-producing (certifying) or proven-correct (certified). Proof-producing
compilers usually operate on the functional languages of the proof assistants that they are written
in, and variable assignments are encoded as let binders. All existing proof-producing rewriting
strategies scale at least quadratically in the number of binders. This performance scaling is inade-
quate for applications like Fiat Cryptography [Erbsen et al. 2019] where the generated code has
1000s of variables in a single function. Proven-correct compilers do not suffer from this asymptotic
blowup in the number of binders.

In this paper, we present the first proven-correct compiler-builder toolkit parameterized
on rewrite rules. Arbitrary sets of Coq theorems, proving quantified equalities, can be assembled
by a single new Coq command into an extraction-ready verified compiler. We did not need to
extend the trusted code base, so our compiler compiler need not be trusted in any way. We achieve
both good performance of compiler runs and good performance of generated code, via addressing
a number of scale-up challenges vs. past work, including efficient handling of intermediate code
with thousands of nested variable binders and critical subterm sharing.

2018. 2475-1421/2018/1-ART1 $15.00
https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://doi.org/

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Anon.

We evaluate our builder toolkit by replacing a key component of Fiat Cryptography, a Coq library
that generates code for big-integer modular arithmetic at the heart of elliptic-curve-cryptography
algorithms. This domain-specific compiler has been adopted, for instance, in the Chrome Web
browser, such that the majority of all HTTPS connections from browsers are now initiated using
code generated (with proof) by Fiat Cryptography. With our improved compiler architecture, it
became easy to add two new backends and a variety of new supported source-code features, and
we were easily able to try out new optimizations and later replace unsound optimizations with
equivalent sound optimizations.

Replacing Fiat Cryptography’s original compiler with the compiler generated by our toolkit has
two additional benefits. Fiat Cryptography was previously only used successfully to build C code
for the two most widely used curves (P-256 and Curve25519). Their execution timed out trying to
compile code for the third most widely used curve (P-384). Using our toolkit has made it possible
to generate compiler-synthesized code for P-384 while generating completely identical code for the
primes handled by the previous version, about 1000×more quickly. Additionally, Fiat Cryptography
previously required source code to be written in continuation-passing style, and our compiler has
enabled a direct-style approach, which pays off in simplifying the theorem statement and proof for
every arithmetic combinator.

1.1 Related Work, Take One
Assume our mission is to take libraries of purely functional combinators, apply them to compile-time
parameters, and compile the results down to lean C code. Furthermore, we ask for machine-checked
proofs that the C programs preserve the input-output behavior of the higher-order functional
programs we started with. What good ideas from the literature can we build on?
Hickey and Nogin [2006] discuss at length how to build compilers around rewrite rules. “All

program transformations, from parsing to code generation, are cleanly isolated and specified as term
rewrites.” While they note that the correctness of the compiler is thus reduced to the correctness
of the rewrite rules, they did not prove correctness mechanically. Furthermore, it is not clear that
they manage to avoid the asymptotic blow-up associated with proof-producing rewriting of deeply
nested let-binders. They give no performance numbers, so it is hard to say whether or not their
compiler performs at the scale necessary for Fiat Cryptography. Their rewrite-engine driver is
unproven OCaml code, while we will produce custom drivers with Coq proofs. This suggests also
that they cannot use rewrite rules which are only sound in the presence of side conditions, as
such side-condition checking could not happen in the engine driving the rewrites. Overall, their
work complements ours; we focus on how to build a scalable engine for building a proven-correct
compiler around shallowly embedded rewrite rules in a proof assistant like Coq; they focus on
what rewrite rules are necessary for implementing a general-purpose compiler.

Rtac [Malecha and Bengtson 2016] is a more general framework for verified proof tactics in
Coq, including an experimental reflective version of rewrite_strat supporting arbitrary setoid
relations, unification variables, and arbitrary semidecidable side conditions solvable by other
verified tactics, using de Bruijn indexing to manage binders. We found that Rtac misses a critical
feature for compiling large programs: preserving subterm sharing. As a result, our experiments with
compiler construction yielded clear asymptotic slowdown vs. what we eventually accomplished.
Rtac is also more heavyweight to use, for instance requiring that theorems be restated manually in
a deep embedding to bring them into automation procedures. Furthermore, we are not aware of
any past experiments driving verified compilers with Rtac , and we expect there would be other
bottlenecks working with large, deeply nested terms.

Aehlig et al. [2008] came closest to a fitting approach, using normalization by evaluation (NbE) [Berger
and Schwichtenberg 1991] to bootstrap reduction of open terms on top of full reduction, as built

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Accelerating Verified-Compiler Development with a Verified Rewriting Engine 1:3

into a proof assistant. However, it was simultaneously true that they expanded the proof-assistant
trusted code base in ways specific to their technique, and that they did not report any experiments
actually using the tool for partial evaluation (just traditional full reduction), potentially hiding
performance-scaling challenges or other practical issues. For instance, they also do not preserve
subterm sharing explicitly, and they represent variable references as unary natural numbers (de
Bruijn-style). They also require that rewrite rules be embodied in ML code, rather than stated as
natural “native” lemmas of the proof assistant. We will follow their basic outline with important
modifications.

So, overall, to our knowledge, no past compiler as a set of rewrite rules has come with a full proof
of correctness as a standalone functional program. Related prior work with mechanized proofs
suffered from both performance bottlenecks and usability problems, the latter in requiring that
eligible rewrite rules be stated in special deep embeddings. We will demonstrate all of these pieces
working together well enough to be adopted by several high-profile open-source projects.

1.2 Our Solution
Our variant on the technique of Aehlig et al. [2008] has these advantages:

• It integrates with a general-purpose, foundational proof assistant, without growing the
trusted code base.

• For a wide variety of initial functional programs, it provides fast partial evaluation with
reasonable memory use.

• It allows reduction thatmixes rules of the definitional equality with equalities proven explicitly
as theorems.

• It allows rapid iteration on rewrite rules with minimal verification overhead.
• It preserves sharing of common subterms.
• It also allows extraction of standalone compilers.

Our contributions include answers to a number of challenges that arise in scaling NbE-based
partial evaluation in a proof assistant. First, we rework the approach of Aehlig et al. [2008] to
function without extending a proof assistant’s trusted code base, which, among other challenges,
requires us to prove termination of reduction and encode pattern matching explicitly (leading us
to adopt the performance-tuned approach of Maranget [2008]). We also improve on Coq-specific
related work (e.g., of Malecha and Bengtson [2016]) by allowing rewrites to be written in natural
Coq form (not special embedded syntax-tree types), while supporting optimizations associated
with past unverified engines (e.g., Boespflug [2009]).

Second, using partial evaluation to generate residual terms thousands of lines long raises new
scaling challenges:

• Output terms may contain somany nested variable binders that we expect it to be performance-
prohibitive to perform bookkeeping operations on first-order-encoded terms (e.g., with de
Bruijn indices, as is done in Rtac by Malecha and Bengtson [2016]). For instance, while the
reported performance experiments of Aehlig et al. [2008] generate only closed terms with
no binders, Fiat Cryptography may generate a single routine (e.g., multiplication for curve
P-384) with nearly a thousand nested binders.

• Naive representation of terms without proper sharing of common subterms can lead to fatal
term-size blow-up. Fiat Cryptography’s arithmetic routines rely on significant sharing of this
kind.

• Unconditional rewrite rules are in general insufficient, and we need rules with side conditions.
For instance, in Fiat Cryptography, some rules for simplifying modular arithmetic depend on
proofs that operations in subterms do not overflow.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4 Anon.

• However, it is also not reasonable to expect a general engine to discharge all side conditions
on the spot. We need integration with abstract interpretation that can analyze whole programs
to support reduction.

Briefly, our respective solutions to these problems are the parametric higher-order abstract syntax
(PHOAS) [Chlipala 2008] term encoding, a let-lifting transformation threaded throughout reduction,
extension of rewrite rules with executable Boolean side conditions, and a design pattern that uses
decorator function calls to include analysis results in a program.

Finally, we carry out the first large-scale performance-scaling evaluation of a verified rewrite-rule-
based compiler, covering all elliptic curves from the published Fiat Cryptography experiments,
along with microbenchmarks.
We pause to give a motivating example before presenting the core structure of our engine

(section 3), the additional scaling challenges we faced (section 4), experiments (section 5), and related
work (section 6) and conclusions. Our implementation is included as an anonymous supplement.

2 A MOTIVATING EXAMPLE
Our style of compilation involves source programs that mix higher-order functions and inductive
datatypes. We want to compile them to C code, reducing away all uses of fancier features while
seizing opportunities for arithmetic simplification. Let us walk through a small example that
nonetheless illustrates several key challenges.

Definition prefixSums (ls:list nat) : list nat :=
let ls' := combine ls (seq 0 (length ls)) in
let ls'' := map (𝜆 p, fst p * snd p) ls' in
let '(_, ls''') := fold_left (𝜆 '(acc, ls''') n,

let acc' := acc + n in (acc', acc' :: ls''')) ls'' (0, []) in
ls'''.

This function first computes list ls' that pairs each element of input list ls with its position,
so, for instance, list [𝑎;𝑏; 𝑐] becomes [(𝑎, 0); (𝑏, 1); (𝑐, 2)]. Then we map over the list of pairs,
multiplying the components at each position. Finally, we traverse that list, building up a list of all
prefix sums.

We would like to specialize this function to particular list lengths. That is, we know in advance
how many list elements we will pass in, but we do not know the values of those elements. For a
given length, we can construct a schematic list with one free variable per element. For example,
to specialize to length four, we can apply the function to list [a; b; c; d], and we expect this
output:

let acc := b + c * 2 in
let acc' := acc + d * 3 in
[acc'; acc; b; 0]

We do not quite have C code yet, but, composing this code with another routine to consume the
output list, we easily arrive at a form that looks almost like three-address code and is quite easy to
translate to C and many other languages. That actual translation we leave to other small compiler
phases outside the scope of this paper.
Notice how subterm sharing via lets is important. As list length grows, we avoid quadratic

blowup in term size through sharing. Also notice how we simplified the first two multiplications
with 𝑎 · 0 = 0 and 𝑏 · 1 = 𝑏 (each of which requires explicit proof in Coq), using other arithmetic
identities to avoid introducing new variables for the first two prefix sums of ls'', as they are
themselves constants or variables, after simplification.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Accelerating Verified-Compiler Development with a Verified Rewriting Engine 1:5

To set up our compiler, we prove the algebraic laws that it should use for simplification, starting
with basic arithmetic identities.
Lemma zero_plus : ∀ n, 0 + n = n. Lemma times_zero : ∀ n, n * 0 = 0.
Lemma plus_zero : ∀ n, n + 0 = n. Lemma times_one : ∀ n, n * 1 = n.

Next, we prove a law for each list-related function, connecting it to the primitive-recursion
combinator for some inductive type (natural numbers or lists, as appropriate). We also use a further
marker ident.eagerly to ask the compiler to simplify a case of primitive recursion by complete
traversal of the designated argument’s constructor tree.
Lemma eval_map A B (f : A -> B) l
: map f l = ident.eagerly list_rect _ _ [] (𝜆 x _ l', f x :: l') l.
Lemma eval_fold_left A B (f : A -> B -> A) l a
: fold_left f l a = ident.eagerly list_rect _ _ (𝜆 a, a) (𝜆 x _ r a, r (f a x)) l a.
Lemma eval_combine A B (la : list A) (lb : list B)
: combine la lb =
list_rect _ (𝜆 _, []) (𝜆 x _ r lb, list_case (𝜆 _, _) [] (𝜆 y ys, (x,y)::r ys) lb) la lb.
Lemma eval_length A (ls : list A)
: length ls = list_rect _ 0 (𝜆 _ _ n, S n) ls.

With all the lemmas available, we can package them up into a rewriter, which triggers generation
of a specialized compiler and its soundness proof. Our Coq plugin introduces a new command Make
for building rewriters
Make rewriter := Rewriter For (zero_plus, plus_zero, times_zero, times_one, eval_map,

eval_fold_left, do_again eval_length, do_again eval_combine,
eval_rect nat, eval_rect list, eval_rect prod) (with delta) (with extra idents (seq)).

Most inputs to Rewriter For list quantified equalities to use for left-to-right rewriting. However,
we also use options do_again, to request that some rules trigger extra bottom-up passes after
being used for rewriting; eval_rect, to queue up eager evaluation of a call to a primitive-recursion
combinator on a known recursive argument; with delta, to request evaluation of all monomorphic
operations on concrete inputs; and with extra idents, to inform the engine of further permitted
identifiers that do not appear directly in any of the rewrite rules.
Our plugin also provides new tactics like Rewrite_rhs_for, which applies a rewriter to the

right-hand side of an equality goal. That last tactic is just what we need to synthesize a specialized
prefixSums for list length four, along with a proof of its equivalence to the original function.
Definition prefixSums4 :
{f:nat→nat→nat→nat→list nat|∀ a b c d,f a b c d = prefixSums [a;b;c;d]}

:= ltac:(eexists; Rewrite_rhs_for rewriter; reflexivity).

That compiler execution ran inside of Coq, but even more pragmatic is to extract the compiler
as a standalone program in OCaml or Haskell. Such a translation is possible because the Make
command produces a proved program in Gallina, Coq’s logic that doubles as a dependently typed
functional language. As a result, our reworking of Fiat Cryptography compilation culminated in
extraction of a command-line OCaml program that developers in industry have been able to run
without our help, where Fiat Cryptography previously required installing and running Coq, with
an elaborate build process to capture its output. It is also true that the standalone program is about
10× as fast as execution within Coq, though the trusted code base is larger for the extracted version,
since extraction itself is not proved.

3 THE STRUCTURE OF A REWRITER
We are mostly guided by Aehlig et al. [2008] but made a number of crucial changes. Let us review
the basic idea of the approach of Aehlig et al. First, their supporting library contains:

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

1:6 Anon.

(1) Within the logic of the proof assistant (Isabelle/HOL, in their case), a type of syntax trees for
ML programs is defined, with an associated operational semantics. This operational semantics
is trusted, much as Coq extraction is trusted.

(2) They also wrote a reduction function in (deeply embedded) ML, parameterized on a function
to choose the next rewrite, and proved it sound once-and-for-all, against the ML operational
semantics.

Given a set of rewrite rules and a term to simplify, their main tactic must:
(1) Generate a (deeply embedded) ML program that decides which rewrite rule, if any, to apply at

the top node of a syntax tree, along with a proof of its soundness with respect to ML semantics.
(2) Generate a (deeply embedded) ML term standing for the term we set out to simplify, with a

proof that it means the same as the original.
(3) Combine the general proof of the rewrite engine with proofs generated by reification (the

prior two steps), conclude that an application of the reduction function to the reified rules
and term is indeed an ML term that generates correct answers.

(4) “Throw the ML term over the wall,” using a general code-generation framework for Is-
abelle/HOL [Haftmann and Nipkow 2007]. Trusted code compiles the ML code into the
concrete syntax of a mainstream ML language, Standard ML in their case, and compiles it
with an off-the-shelf compiler. The output of that compiled program is then passed back
over to the tactic, in terms of an axiomatic assertion that the ML semantics really yields that
answer.

Here is where our approach differs at that level of detail:
• Our reduction engine is written as a normal Gallina functional program, rather than within
a deeply embedded language. As a result, we are able to prove its type-correctness and
termination, and we are able to run it within Coq’s kernel, rather than through a plugin.

• We do compile-time specialization of the reduction engine to sets of rewrite rules, removing
overheads of generality.

3.1 Our Approach in Nine Steps
Here is a bit more detail on the steps that go into applying our Coq plugin, many of which we expand
on in the following sections. In order to build a precomputed rewriter with the Make command, the
following actions are performed:
(1) The given lemma statements are scraped for which named functions and types the rewriter

package will support.
(2) Inductive types enumerating all available primitive types and functions are emitted. This

allows us to achieve the performance gains attributed in Boespflug [2009] to having na-
tive metalanguage constructors for each constant without needing to manually code an
enumeration.

(3) Tactics generate all of the necessary definitions and prove all of the necessary lemmas for
dealing with this particular set of inductive codes. Definitions include operations like Boolean
equality on type codes and lemmas like “all representable primitive types have decidable
equality.”

(4) The statements of rewrite rules are reified and soundness and syntactic-well-formedness
lemmas are proven about each of them. Each instance of the former involves wrapping the
user-provided proof with the right adapter to apply to the reified version. Automating this
step allows rewrite rules to be proven in terms of their shallow embedding, which drastically
accelerates iteration on the set of rewrite rules.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Accelerating Verified-Compiler Development with a Verified Rewriting Engine 1:7

(5) The definitions needed to perform reification and rewriting and the lemmas needed to prove
correctness are assembled into a single package that can be passed by name to the rewriting
tactic.

When we want to rewrite with a rewriter package in a goal, the following steps are performed:
(1) We rearrange the goal into a single logical formula: all free-variable quantification in the proof

context is replaced by changing the equality goal into an equality between two functions
(taking the free variables as inputs).

(2) We reify the side of the goal we want to simplify, using the inductive codes in the specified
package. That side of the goal is then replaced with a call to a denotation function on the
reified version.

(3) We use a theorem stating that rewriting preserves denotations of well-formed terms to replace
the denotation subterm with the denotation of the rewriter applied to the same reified term.
We use Coq’s built-in full reduction (vm_compute) to reduce the application of the rewriter
to the reified term.

(4) Finally, we run cbv (a standard call-by-value reducer) to simplify away the invocation of the
denotation function on the concrete syntax tree from rewriting.

The object language of our rewriter is nearly simply typed, with limited support for calling
polymorphic functions.

𝑒 ::= App 𝑒1 𝑒2 | Let 𝑣 = 𝑒1 In 𝑒2 | Abs (𝜆𝑣. 𝑒) | Var 𝑣 | Ident 𝑖

The Ident case is for identifiers, which are described by an enumeration specific to a use of our
library. For example, the identifiers might be codes for +, ·, and literal constants. We write J𝑒K for a
standard denotational semantics.

3.2 Pattern-Matching Compilation and Evaluation
Aehlig et al. [2008] feed a specific set of user-provided rewrite rules to their engine by generating
code for an ML function, which takes in deeply embedded term syntax (actually doubly deeply
embedded, within the syntax of the deeply embedded ML!) and uses ML pattern matching to
decide which rule to apply at the top level. Thus, they delegate efficient implementation of pattern
matching to the underlying ML implementation. As we instead build our rewriter in Coq’s logic, we
have no such option to defer to ML. Indeed, Coq’s logic only includes primitive pattern-matching
constructs to match one constructor at a time.
We could follow a naive strategy of repeatedly matching each subterm against a pattern for

every rewrite rule, as in the rewriter of Malecha and Bengtson [2016], but in that case we do a lot
of duplicate work when rewrite rules use overlapping function symbols. Instead, we adopted the
approach of Maranget [2008], who describes compilation of pattern matches in OCaml to decision
trees that eliminate needless repeated work (for example, decomposing an expression into 𝑥 +𝑦 + 𝑧
only once even if two different rules match on that pattern). We have not yet implemented any of
the optimizations described therein for finding minimal decision trees.
There are three steps to turn a set of rewrite rules into a functional program that takes in an

expression and reduces according to the rules. The first step is pattern-matching compilation: we
must compile the left-hand sides of the rewrite rules to a decision tree that describes how and in
what order to decompose the expression, as well as describing which rewrite rules to try at which
steps of decomposition. Because the decision tree is merely a decomposition hint, we require no
proofs about it to ensure soundness of our rewriter. The second step is decision-tree evaluation,
during which we decompose the expression as per the decision tree, selecting which rewrite rules to
attempt. The only correctness lemma needed for this stage is that any result it returns is equivalent

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Anon.

to picking some rewrite rule and rewriting with it. The third and final step is to actually rewrite
with the chosen rule. Here the correctness condition is that we must not change the semantics
of the expression. Said another way, any rewrite-rule replacement expression must match the
semantics of the rewrite-rule pattern.

While pattern matching begins with comparing one pattern against one expression, Maranget’s
approach works with intermediate goals that check multiple patterns against multiple expressions.
A decision tree describes how to match a vector (or list) of patterns against a vector of expressions.
It is built from these constructors:

• TryLeaf k onfailure: Try the 𝑘 th rewrite rule; if it fails, keep going with onfailure.
• Failure: Abort; nothing left to try.
• Switch icases app_case default: With the first element of the vector, match on its kind;
if it is an identifier matching something in icases, which is a list of pairs of identifiers and
decision trees, remove the first element of the vector and run that decision tree; if it is an
application and app_case is not None, try the app_case decision tree, replacing the first
element of each vector with the two elements of the function and the argument it is applied
to; otherwise, do not modify the vectors and use the default decision tree.

• Swap i cont: Swap the first element of the vector with the 𝑖th element (0-indexed) and keep
going with cont.

Consider the encoding of two simple example rewrite rules, where we follow Coq’sLtac language
in prefacing pattern variables with question marks.

?𝑛 + 0 → 𝑛 fstZ,Z (?𝑥, ?𝑦) → 𝑥

We embed them in an AST type for patterns, which largely follows our ASTs for expressions.
0. App (App (Ident +) Wildcard) (Ident (Literal 0))
1. App (Ident fst) (App (App (Ident pair) Wildcard) Wildcard)

The decision tree produced is

App
�� App //

fst
22

+ // Swap 0↔1 // Literal 0 // TryLeaf 0

App
//

App
//

pair
// TryLeaf 1

where every nonswap node implicitly has a “default” case arrow to Failure and circles represent
Switch nodes.

We implement, in Coq’s logic, an evaluator for these trees against terms. Note that we use Coq’s
normal partial evaluation to turn our general decision-tree evaluator into a specialized matcher
to get reasonable efficiency. Although this partial evaluation of our partial evaluator is subject
to the same performance challenges we highlighted in the introduction, it only has to be done
once for each set of rewrite rules, and we are targeting cases where the time of per-goal reduction
dominates this time of metacompilation.

For our running example of two rules, specializing gives us this match expression.
match e with
| App f y => match f with

| Ident fst => match y with
| App (App (Ident pair) x) y => x | _ => e end

| App (Ident +) x => match y with
| Ident (Literal 0) => x | _ => e end | _ => e end | _ => e end.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Accelerating Verified-Compiler Development with a Verified Rewriting Engine 1:9

3.3 Adding Higher-Order Features
Fast rewriting at the top level of a term is the key ingredient for supporting customized algebraic
simplification. However, not only do we want to rewrite throughout the structure of a term, but
we also want to integrate with simplification of higher-order terms, in a way where we can prove
to Coq that our syntax-simplification function always terminates. Normalization by evaluation
(NbE) [Berger and Schwichtenberg 1991] is an elegant technique for adding the latter aspect, in a
way where we avoid needing to implement our own 𝜆-term reducer or prove it terminating.

To orient expectations: we would like to enable the following reduction

(𝜆𝑓 𝑥 𝑦. 𝑓 𝑥 𝑦) (+) 𝑧 0 { 𝑧

using the rewrite rule

?𝑛 + 0 → 𝑛

We begin by reviewing NbE’s most classic variant, for performing full 𝛽-reduction in a simply
typed term in a guaranteed-terminating way. The simply typed 𝜆-calculus syntax we use is:

𝑡 ::= 𝑡 → 𝑡 | 𝑏 𝑒 ::= 𝜆𝑣. 𝑒 | 𝑒 𝑒 | 𝑣 | 𝑐
with 𝑣 for variables, 𝑐 for constants, and 𝑏 for base types.

We can now define normalization by evaluation. First, we choose a “semantic” representation
for each syntactic type, which serves as the result type of an intermediate interpreter.

NbE𝑡 (𝑡1 → 𝑡2) = NbE𝑡 (𝑡1) → NbE𝑡 (𝑡2)
NbE𝑡 (𝑏) = expr(𝑏)

Function types are handled as in a simple denotational semantics, while base types receive the
perhaps-counterintuitive treatment that the result of “executing” one is a syntactic expression of
the same type. We write expr(𝑏) for the metalanguage type of object-language syntax trees of type
𝑏, relying on a type family expr.

Now the core of NbE, shown in Figure 1, is a pair of dual functions reify and reflect, for converting
back and forth between syntax and semantics of the object language, defined by primitive recursion
on type syntax. We split out analysis of term syntax in a separate function reduce, defined by
primitive recursion on term syntax, when usually this functionality would be mixed in with reflect.
The reason for this choice will become clear when we extend NbE to handle our full problem
domain.

We write 𝑣 for object-language variables and 𝑥 for metalanguage (Coq) variables, and we overload
𝜆 notation using the metavariable kind to signal whether we are building a host 𝜆 or a 𝜆 syntax tree
for the embedded language. The crucial first clause for reduce replaces object-language variable 𝑣
with fresh metalanguage variable 𝑥 , and then we are somehow tracking that all free variables in an
argument to reduce must have been replaced with metalanguage variables by the time we reach
them. We reveal in subsection 4.1 the encoding decisions that make all the above legitimate, but
first let us see how to integrate use of the rewriting operation from the previous section. To fuse
NbE with rewriting, we only modify the constant case of reduce. First, we bind our specialized
decision-tree engine under the name rewrite-head. Recall that this function only tries to apply
rewrite rules at the top level of its input.

In the constant case, we still reflect the constant, but underneath the binders introduced by full
𝜂-expansion, we perform one instance of rewriting. In other words, we change this one function-
definition clause:

reflect𝑏 (𝑒) = rewrite-head(𝑒)

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

1:10 Anon.

reify𝑡 : NbE𝑡 (𝑡) → expr(𝑡)
reify𝑡1→𝑡2

(𝑓) = 𝜆𝑣. reify𝑡2 (𝑓 (reflect𝑡1 (𝑣)))
reify𝑏 (𝑓) = 𝑓

reflect𝑡 : expr(𝑡) → NbE𝑡 (𝑡)
reflect𝑡1→𝑡2 (𝑒) = 𝜆𝑥. reflect𝑡2 (𝑒 (reify𝑡1 (𝑥))

reflect𝑏 (𝑒) = 𝑒

reduce : expr(𝑡) → NbE𝑡 (𝑡)
reduce(𝜆𝑣. 𝑒) = 𝜆𝑥. reduce([𝑥/𝑣]𝑒)
reduce(𝑒1 𝑒2) = (reduce(𝑒1)) (reduce(𝑒2))

reduce(𝑥) = 𝑥

reduce(𝑐) = reflect(𝑐)

NbE : expr(𝑡) → expr(𝑡)
NbE(𝑒) = reify(reduce(𝑒))

Fig. 1. Implementation of normalization by evaluation

It is important to note that a constant of function type will be 𝜂-expanded only once for each
syntactic occurrence in the starting term, though the expanded function is effectively a thunk,
waiting to perform rewriting again each time it is called. From first principles, it is not clear why
such a strategy terminates on all possible input terms, though we work up to convincing Coq of
that fact.
The details so far are essentially the same as in the approach of Aehlig et al. [2008]. Recall

that their rewriter was implemented in a deeply embedded ML, while ours is implemented in
Coq’s logic, which enforces termination of all functions. Aehlig et al. did not prove termination,
which indeed does not hold for their rewriter in general, which works with untyped terms, not to
mention the possibility of rule-specific ML functions that diverge themselves. In contrast, we need
to convince Coq up-front that our interleaved 𝜆-term normalization and algebraic simplification
always terminate. Additionally, we need to prove that our rewriter preserves denotations of terms,
which can easily devolve into tedious binder bookkeeping, depending on encoding.

The next section introduces the techniques we use to avoid explicit termination proof or binder
bookkeeping, in the context of a more general analysis of scaling challenges.

4 SCALING CHALLENGES
Aehlig et al. [2008] only evaluated their implementation against closed programs. What happens
when we try to apply the approach to partial-evaluation problems that should generate thousands
of lines of low-level code?

4.1 Variable Environments Will Be Large
We should think carefully about representation of ASTs, since many primitive operations on
variables will run in the course of a single partial evaluation. For instance, Aehlig et al. [2008]
reported a significant performance improvement changing variable nodes from using strings

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Accelerating Verified-Compiler Development with a Verified Rewriting Engine 1:11

to using de Bruijn indices [De Bruijn 1972]. However, de Bruijn indices and other first-order
representations remain painful to work with. We often need to fix up indices in a term being
substituted in a new context. Even looking up a variable in an environment tends to incur linear
time overhead, thanks to traversal of a list. Perhaps we can do better with some kind of balanced-
tree data structure, but there is a fundamental performance gap versus the arrays that can be used
in imperative implementations. Unfortunately, it is difficult to integrate arrays soundly in a logic.
Also, even ignoring performance overheads, tedious binder bookkeeping complicates proofs.

Our strategy is to use a variable encoding that pushes all first-order bookkeeping off on Coq’s ker-
nel or the implementation of the language we extract to, which are themselves performance-tuned
with some crucial pieces of imperative code. Parametric higher-order abstract syntax (PHOAS) [Chli-
pala 2008] is a dependently typed encoding of syntax where binders are managed by the enclosing
type system. It allows for relatively easy implementation and proof for NbE, so we adopted it for
our framework.
Here is the actual inductive definition of term syntax for our object language, PHOAS-style.

The characteristic oddity is that the core syntax type expr is parameterized on a dependent type
family for representing variables. However, the final representation type Expr uses first-class
polymorphism over choices of variable type, bootstrapping on the metalanguage’s parametricity to
ensure that a syntax tree is agnostic to variable type.
Inductive type := arrow (s d : type) | base (b : base_type).
Infix "→" := arrow.
Inductive expr (var : type -> Type) : type -> Type :=
| Var {t} (v : var t) : expr var t
| Abs {s d} (f : var s -> expr var d) : expr var (s → d)
| App {s d} (f : expr var (s → d)) (x : expr var s) : expr var d
| LetIn {a b} (x : expr var a) (f : var a -> expr var b) : expr var b
| Const {t} (c : const t) : expr var t.
Definition Expr (t : type) : Type := forall var, expr var t.

A good example of encoding adequacy is assigning a simple denotational semantics. First, a
simple recursive function assigns meanings to types.
Fixpoint denoteT (t : type) : Type

:= match t with
| arrow s d => denoteT s -> denoteT d
| base b => denote_base_type b
end.

Next we see the convenience of being able to use an expression by choosing how it should
represent variables. Specifically, it is natural to choose the type-denotation function itself as the
variable representation. Especially note how this choice makes rigorous the convention we followed
in the prior section (e.g., in the suspicious function-abstraction clause of function reduce), where a
recursive function enforces that values have always been substituted for variables early enough.
Fixpoint denoteE {t} (e : expr denoteT t) : denoteT t

:= match e with
| Var v => v
| Abs f => 𝜆 x, denoteE (f x)
| App f x => (denoteE f) (denoteE x)
| LetIn x f => let xv := denoteE x in denoteE f xv
| Ident c => denoteI c
end.

Definition DenoteE {t} (E : Expr t) : denoteT t
:= denoteE (E denoteT).

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

1:12 Anon.

It is now easy to follow the same script in making our rewriting-enabled NbE fully formal. Note
especially the first clause of reduce, where we avoid variable substitution precisely because we
have chosen to represent variables with normalized semantic values. The subtlety there is that
base-type semantic values are themselves expression syntax trees, which depend on a nested choice
of variable representation, which we retain as a parameter throughout these recursive functions.
The final definition 𝜆-quantifies over that choice.
Fixpoint nbeT var (t : type) : Type

:= match t with
| arrow s d => nbeT var s -> nbeT var d
| base b => expr var b
end.

Fixpoint reify {var t} : nbeT var t -> expr var t
:= match t with

| arrow s d => 𝜆 f, Abs (𝜆 x, reify (f (reflect (Var x))))
| base b => 𝜆 e, e
end

with reflect {var t} : expr var t -> nbeT var t
:= match t with

| arrow s d => 𝜆 e, 𝜆 x, reflect (App e (reify x))
| base b => rewrite_head
end.

Fixpoint reduce {var t} (e : expr (nbeT var) t) : nbeT var t
:= match e with

| Abs e => 𝜆 x, reduce (e (Var x))
| App e1 e2 => (reduce e1) (reduce e2)
| Var x => x
| Ident c => reflect (Ident c)
end.

Definition Rewrite {t} (E : Expr t) : Expr t
:= 𝜆 var, reify (reduce (E (nbeT var t))).

One subtlety hidden above in implicit arguments is in the final clause of reduce, where the two
applications of the Ident constructor use different variable representations. With all those details
hashed out, we can prove a pleasingly simple correctness theorem, with a lemma for each main
definition, with inductive structure mirroring recursive structure of the definition, also appealing
to correctness of last section’s pattern-compilation operations. (We now use syntax J·K for calls to
DenoteE.)

∀𝑡, 𝐸 : Expr t. JRewrite(𝐸)K = J𝐸K

Even before getting to the correctness theorem, we needed to convince Coq that the function
terminates. While for Aehlig et al. [2008], a termination proof would have been a whole separate
enterprise, it turns out that PHOAS and NbE line up so well that Coq accepts the above code with
no additional termination proof; each key function is obviously structurally recursive on either a
type or an expression. As a result, the Coq kernel is ready to run our Rewrite procedure during
checking.
To understand how we now apply the soundness theorem in a tactic, it is important to note

how the Coq kernel builds in reduction strategies. These strategies have, to an extent, been tuned
to work well to show equivalence between a simple denotational-semantics application and the
semantic value it produces. In contrast, it is rather difficult to code up one reduction strategy that
works well for all partial-evaluation tasks. Therefore, we should restrict ourselves to (1) running

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Accelerating Verified-Compiler Development with a Verified Rewriting Engine 1:13

full reduction in the style of functional-language interpreters and (2) running normal reduction on
“known-good” goals like correctness of evaluation of a denotational semantics on a concrete input.

Operationally, then, we apply our tactic in a goal containing a term 𝑒 that we want to partially
evaluate. In standard proof-by-reflection style, we reify 𝑒 into some 𝐸 where J𝐸K = 𝑒 , replacing
𝑒 accordingly, asking Coq’s kernel to validate the equivalence via standard reduction. Now we
use the Rewrite correctness theorem to replace J𝐸K with JRewrite(𝐸)K. Next we may ask the Coq
kernel to simplify Rewrite(𝐸) by full reduction via compilation to native code, since we carefully
designed Rewrite(𝐸) and its dependencies to produce closed syntax trees, so that reduction will
not get stuck pattern-matching on free variables. Finally, where 𝐸 ′ is the result of that reduction,
we simplify J𝐸 ′K with standard reduction, producing a normal-looking Coq term.

We have been discussing representation of bound variables. Also important is representation of
constants (e.g., library functions mentioned in rewrite rules). They could also be given some explicit
first-order encoding, but dispatching on, say, strings or numbers for constants would be rather
inefficient in our generated code. Instead, we chose to have our Coq plugin generate a custom
inductive type of constant codes, for each rewriter that we ask it to build with Make. As a result,
dispatching on a constant can happen in constant time, based on whatever pattern-matching is
built into the execution language (either the Coq kernel or the target language of extraction). To
our knowledge, no past verified reduction tool in a proof assistant has employed that optimization.

4.2 Subterm Sharing Is Crucial
For some large-scale partial-evaluation problems, it is important to represent output programs
with sharing of common subterms. Redundantly inlining shared subterms can lead to exponential
increase in space requirements. Consider the Fiat Cryptography [Erbsen et al. 2019] example of
generating a 64-bit implementation of field arithmetic for the P-256 elliptic curve. The library has
been converted manually to continuation-passing style, allowing proper generation of let binders,
whose variables are often mentioned multiple times. We ran their code generator (actually just
a subset of its functionality, but optimized by us a bit further, as explained in subsection 5.3) on
the P-256 example and found it took about 15 seconds to finish. Then we modified reduction to
inline let binders instead of preserving them, at which point the reduction job terminated with an
out-of-memory error, on a machine with 64 GB of RAM. (The successful run uses under 2 GB.)
We see a tension here between performance and niceness of library implementation. The Fiat

Cryptography authors found it necessary to CPS-convert their code to coax Coq into adequate
reduction performance. Then all of their correctness theorems were complicated by reasoning about
continuations. In fact, the CPS reasoning was so painful that at one point most algorithms in their
template library were defined twice, once in continuation-passing style and once in direct-style code,
because it was easier to prove the two equivalent and work with the non-CPS version than to reason
about the CPS version directly. It feels like a slippery slope on the path to implementing a domain-
specific compiler, rather than taking advantage of the pleasing simplicity of partial evaluation on
natural functional programs. Our reduction engine takes shared-subterm preservation seriously
while applying to libraries in direct style.

Our approach is let-lifting: we lift lets to top level, so that applications of functions to lets
are available for rewriting. For example, we can perform the rewriting

map (𝜆𝑥.𝑦 + 𝑥) (let 𝑧 := 𝑒 in [0; 1; 2; 𝑧; 𝑧 + 1])
{ let 𝑧 := 𝑒 in [𝑦;𝑦 + 1;𝑦 + 2;𝑦 + 𝑧;𝑦 + (𝑧 + 1)]

using the rules

map ?𝑓 [] → [] map ?𝑓 (?𝑥 :: ?𝑥𝑠) → 𝑓 𝑥 :: map 𝑓 𝑥𝑠 ?𝑛 + 0 → 𝑛

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

1:14 Anon.

We define a telescope-style type family called UnderLets:
Inductive UnderLets {var} (T : Type) :=
| Base (v : T)
| UnderLet {A}(e : @expr var A)(f : var A -> UnderLets T).

A value of type UnderLets T is a series of let binders (where each expression e may mention
earlier-bound variables) ending in a value of type T. It is easy to build various “smart constructors”
working with this type, for instance to construct a function application by lifting the lets of both
function and argument to a common top level.
Such constructors are used to implement an NbE strategy that outputs UnderLets telescopes.

Recall that the NbE type interpretation mapped base types to expression syntax trees. We now
parameterize that type interpretation by a Boolean declaring whether we want to introduce
telescopes.
Fixpoint nbeT' {var} (with_lets : bool) (t : type)

:= match t with
| base t => if with_lets then @UnderLets var (@expr var t) else @expr var t
| arrow s d => nbeT' false s -> nbeT' true d
end.

Definition nbeT := nbeT' false.
Definition nbeT_with_lets := nbeT' true.

There are cases where naive preservation of let binders blocks later rewrites from triggering and
leads to suboptimal performance, so we include some heuristics. For instance, when the expression
being bound is a constant, we always inline. When the expression being bound is a series of list
“cons” operations, we introduce a name for each individual list element, since such a list might be
traversed multiple times in different ways.

4.3 Rules Need Side Conditions
Many useful algebraic simplifications require side conditions. For example, bit-shifting operations
are faster than divisions, so we might want a rule such as

?𝑛/?𝑚 → 𝑛 ≫ log2𝑚 if 2 ⌊log2𝑚⌋ =𝑚

The trouble is how to support predictable solving of side conditions during partial evaluation,
where we may be rewriting in open terms. We decided to sidestep this problem by allowing side
conditions only as executable Boolean functions, to be applied only to variables that are confirmed
as compile-time constants, unlike Malecha and Bengtson [2016] who support general unification
variables. We added a variant of pattern variable that only matches constants. Semantically, this
variable style has no additional meaning, and in fact we implement it as a special identity function
that should be called in the right places within Coq lemma statements. Rather, use of this identity
function triggers the right behavior in our tactic code that reifies lemma statements. We introduce
a notation where a prefixed apostrophe signals a call to the “constants only” function.

Our reification inspects the hypotheses of lemma statements, using type classes to find decidable
realizations of the predicates that are used, thereby synthesizing one Boolean expression of our
deeply embedded term language, which stands for a decision procedure for the hypotheses. The
Make command fails if any such expression contains pattern variables not marked as constants.
Therefore, matching of rules can safely run side conditions, knowing that Coq’s full-reduction
engine can determine their truth efficiently.

Hence, we encode the above rule as

∀𝑛,𝑚. 2 ⌊log2 (’𝑚) ⌋ = ’𝑚 → 𝑛/’𝑚 = 𝑛 ≫ ’(log2𝑚)

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Accelerating Verified-Compiler Development with a Verified Rewriting Engine 1:15

4.4 Side Conditions Need Abstract Interpretation
With our limitation that side conditions are decided by executable Boolean procedures, we cannot yet
handle directly some of the rewrites needed for realistic compilation. For instance, Fiat Cryptography
reduces high-level functional to low-level code that only uses integer types available on the target
hardware. The starting library code works with arbitrary-precision integers, while the generated
low-level code should be careful to avoid unintended integer overflow. As a result, the setup may be
too naive for our running example rule ?𝑛+0 → 𝑛. When we get to reducing fixed-precision-integer
terms, we must be legalistic:

add_with_carry64 (?𝑛, 0) → (0, 𝑛) if 0 ≤ 𝑛 < 264

We developed a design pattern to handle this kind of rule.
First, we introduce a family of functions clip𝑙,𝑢 , each of which forces its integer argument to

respect lower bound 𝑙 and upper bound 𝑢. Partial evaluation is proved with respect to unknown
realizations of these functions, only requiring that clip𝑙,𝑢 (𝑛) = 𝑛 when 𝑙 ≤ 𝑛 < 𝑢. Now, before
we begin partial evaluation, we can run a verified abstract interpreter to find conservative bounds
for each program variable. When bounds 𝑙 and 𝑢 are found for variable 𝑥 , it is sound to replace 𝑥
with clip𝑙,𝑢 (𝑥). Therefore, at the end of this phase, we assume all variable occurrences have been
rewritten in this manner to record their proved bounds.

Second, we proceed with our example rule refactored:

add_with_carry64 (clip’?𝑙,’?𝑢 (?𝑛), 0) → (0, clip𝑙,𝑢 (𝑛)) if 𝑢 < 264

If the abstract interpreter did its job, then all lower and upper bounds are constants, and we can
execute side conditions straightforwardly during pattern matching.

4.5 Limitations and Preprocessing
We now note some details of the rewriting framework that were previously glossed over, which are
useful for using the code or implementing something similar, but which do not add fundamental
capabilities to the approach. Although the rewriting framework does not support dependently
typed constants, we can automatically preprocess uses of eliminators like nat_rect and list_rect
into nondependent versions. The tactic that does this preprocessing is extensible via Ltac’s reas-
signment feature. Since pattern-matching compilation mixed with NbE requires knowing how
many arguments a constant can be applied to, internally we must use a version of the recursion
principle whose type arguments do not contain arrows; current preprocessing can handle recursion
principles with either no arrows or one arrow in motives.
Recall from section 2 that eval_rect is a definition provided by our framework for eagerly

evaluating recursion associated with certain types. It functions by triggering typeclass resolution
for the lemmas reducing the recursion principle associated to the given type. We provide instances
for nat, prod, list, option, and bool. Users may add more instances if they desire.
Recall again from section 2 that we use ident.eagerly to ask the reducer to simplify a case

of primitive recursion by complete traversal of the designated argument’s constructor tree. Our
current version only allows a limited, hard-coded set of eliminators with ident.eagerly (nat_rect
on return types with either zero or one arrows, list_rect on return types with either zero or one
arrows, and List.nth_default), but nothing in principle prevents automatic generation of the
necessary code.

We define a constant Let_In which we use for writing let · · · in · · · expressions that do not
reduce under 𝜁 (Coq’s reduction rule for let-inlining). Throughout most of this paper, anywhere
that let · · · in · · · appears, we have actually used Let_In in the code. It would alternatively
be possible to extend the reification preprocessor to automatically convert let · · · in · · · to

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

1:16 Anon.

Let_In, but this strategy may cause problems when converting the interpretation of the reified
term with the prereified term, as Coq’s conversion does not allow fine-tuning of when to inline or
unfold lets.

5 EVALUATION
Our implementation, attached to this submission as an anonymized supplement with a roadmap in
Appendix E, includes a mix of Coq code for the proved core of rewriting, tactic code for setting
up proper use of that core, and OCaml plugin code for the manipulations beyond the current
capabilities of the tactic language. We report here on evidence that the tool is effective, first in
terms of productivity by users and then in terms of compile-time performance.

5.1 Iteration on the Fiat Cryptography Compiler
We ported Fiat Cryptography’s core compiler functionality to use our framework. The result is now
used in production by a number of open-source projects. We were glad to retire the continuation-
passing-style versions of verified arithmetic functions, which had been present only to support
predictable reduction with subterm sharing. More importantly, it became easy to experiment with
new transformations via proving new rewrite theorems, directly in normal Coq syntax and proof
style.

5.1.1 Reassociation of Arithmetic. One of the simplest and most minor examples of iterating on
the Fiat Cryptography compiler is that of reassociating multiplication under certain conditions. In
particular, if 𝑦 ·𝑧 fits in 64 bits, but 𝑥 ·𝑦 and 𝑥 ·𝑦 ·𝑧 both take 128 bits, then we want to emit 𝑥 · (𝑦 ·𝑧)
rather than (𝑥 · 𝑦) · 𝑧. This way, the C compiler will emit one single-width (64-bit) multiplication
and one double-width (128-bit) multiplication, rather than two double-width multiplications. The
rule we use for this is roughly

∀𝑥,𝑦, 𝑐. |’𝑐 | ≤ 28 → (𝑥 · 𝑦) · ’𝑐 = 𝑥 · (𝑦 · ’𝑐)

Recall from subsection 4.3 that the prefix ’ is used to indicate that some pattern must be a compile-
time constant. Since this is just a notation for a specially named identity function, we can prove
this rule just by applying associativity of multiplication in the integers.

5.1.2 New Constructs in the Frontend. Adding support for new constructs in the code being
compiled is quite simple: just add the types and constants to the list used to generate the rewriter
package. The original Fiat Cryptography compiler proof required making changes in several places
and modifying several proofs per new identifier. We added support for the following constructs in
a purely local, modular way:

• multiplication primitives that separately return the high half and low half of a double-width
multiplication

• strings and a “comment” function of type ∀𝐴. string → 𝐴 → 𝐴

• support for bitwise exclusive-or
• an identity function which prints in the backend as a call to some inline assembly defined in
the header which prevents C compilers from introducing conditional jumps into code that
ought to be constant-time

5.1.3 New Middle-End Variations. Performance-debugging runs of our generated compilers led
us to various ideas for improvement, which were quite easy to add locally. For instance, some
bitmasking operations (applying bitwise “and” with constants) can be proved to be no-ops, based
on properties of the terms being masked. This realization led us to add several new rules.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Accelerating Verified-Compiler Development with a Verified Rewriting Engine 1:17

On our way to code generation for different target languages, we often make different decisions
based on which broad families those targets belong to. For instance, only some platforms support
conditional-move instructions. We added easy compiler configuration of whether to try to use
conditional moves. Based on such a flag, we choose different generated rewriters, which have been
described with largely the same rewrite rules, just including or omitting conditional-move-oriented
rules as appropriate.

5.1.4 New Backends. Two new backends were added after this framework was integrated into Fiat
Cryptography. A backend is one set of rewrite rules, motivated by a specific target machine, that
can be composed with the frontend rules that are independent of target. Each such combination
can be used to generate a separate (proved) command-line tool.
The first new backend involved a separate set of identifiers for an unusual hardware platform

with special instructions to accelerate cryptographic arithmetic. The rewrite rules we added merely
translated the constructs in our IR to the corresponding identifiers in this output language.

The other backend we added required all arithmetic operations to operate on a single bitwidth,
rather than mixing, say, 64-bit and 128-bit integers in the same function. To perform this translation,
we add rewrite rules for all operations that produce integers of different bitwidths than they consume.
These rewrite rules replace such an operation with a couple of variable assignments in terms of
operations on the smaller bitwidth, together with a special function Z.combine_at_bitwidth
which is defined to combine two smaller-bitwidth integers into a larger-bitwidth integer. We also
added rewrite rules about how to push various operations on the larger bitwidth through this
Z.combine_at_bitwidth construct (for example, a rule about how to turn a multiplication of two
outputs of Z.combine_at_bitwidth into Z.combine_at_bitwidth applied to multiplications of
the high and low bits of the inputs). By designating Z.combine_at_bitwidth as an identifier that
should be inlined rather than let-bound during the rewriting, we automatically get a complete
compilation of bitwidth-splitting without having to run the rewrite rules repeatedly.

5.1.5 Moving Rules Involving Carries. We originally had rules like “adding 0 to 𝑥 produces just 𝑥 ,
with no carry.” This rule is not true in general, because we must encode carrying as happening at a
particular bitwidth, while we have no guarantee that 𝑥 fits within that bitwidth. The correct rule
has a precondition: that 𝑥 is between 0 and 264.
We discovered this issue when trying to prove our rewrite rules correct. As a result, we had to

move this sort of rule from happening before abstract interpretation to happening after abstract
interpretation. Since the passes are just defined as lists of rewrite rules, moving the rules was quite
simple. (Rephrasing them to talk about the outputs of abstract interpretation was somewhat painful,
though, because the proof assistant did not enforce the conventions we were using for where
to store abstract-interpretation information. We hypothesize that a more uniform approach to
integrating abstract interpretation with rewriting and partial evaluation would solve this problem.)

5.1.6 Fusing Compiler Passes. When we moved the aforementioned constant-folding rules from
before abstract interpretation to after it, the performance of our compiler on Word-by-Word
Montgomery code synthesis decreased significantly. (The generated code did not change.) We
discovered that the number of variable assignments in our intermediate code was quartic in the
number of bits in the prime, while the number of variable assignments in the generated code is
only quadratic. The performance numbers we measured supported this theory: the overall running
time of synthesizing code for a prime near 2𝑘 jumped from Θ(𝑘2) to Θ(𝑘4) when we made this
change. We believe that fusing abstract interpretation with rewriting and partial evaluation would
allow us to fix this asymptotic-complexity issue.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18 Anon.

To make this situation more concrete, consider the following example: Fiat Cryptography uses
abstract interpretation to perform bounds analysis; each expression is associated with a range
that describes the lower and upper bounds of values that expression might take on. Abstract
interpretation on addition works as follows: if we have that 𝑥ℓ ≤ 𝑥 ≤ 𝑥𝑢 and 𝑦ℓ ≤ 𝑦 ≤ 𝑦𝑢 , then
we have that 𝑥ℓ + 𝑦ℓ ≤ 𝑥 + 𝑦 ≤ 𝑥𝑢 + 𝑦𝑢 . Performing bounds analysis on + requires two additions.
We might have an arithmetic simplification that says that 𝑥 + 𝑦 = 𝑥 whenever we know that
0 ≤ 𝑦 ≤ 0. If we perform the abstract interpretation and then the arithmetic simplification, we
perform two additions (for the bounds analysis) and then two comparisons (to test the lower and
upper bounds of 𝑦 for equality with 0). We cannot perform the arithmetic simplification before
abstract interpretation, because we will not know the bounds of 𝑦. However, if we perform the
arithmetic simplification for each expression after performing bounds analysis on its subexpressions
and only after this perform abstract interpretation on the resulting expression, then we need not
use any additions to compute the bounds of 𝑥 + 𝑦 when 0 ≤ 𝑦 ≤ 0, since the expression will just
become 𝑥 .
Another essential pass to fuse with rewriting and partial evaluation is let-lifting. Unless all of

the code is CPS-converted ahead of time, attempting to do let-lifting via rewriting, as must be
done when using setoid_rewrite, rewrite_strat, or Rtac , results in slower asymptotics. This
pattern is already apparent in the LiftLetsMap / “Binders and Recursive Functions” example in
subsubsection 5.2.4. We achieve linear performance in 𝑛 ·𝑚 when ignoring the final cbv, while
setoid_rewrite and rewrite_strat are both cubic. The rewriter in Rtac cannot possibly achieve
better than O

(
𝑛 ·𝑚2) unless it can be sublinear in the number of rewrites, because our rewriter

gets away with a constant number of rewrites (four), plus evaluating recursion principles for a total
amount of work O(𝑛 ·𝑚). But without primitive support for let-lifting, it is instead necessary to
lift the lets by rewrite rules, which requires O

(
𝑛 ·𝑚2) rewrites just to lift the lets. The analysis is

thus: running make simply gives us𝑚 nested applications of map_dbl to a length-𝑛 list. To reduce
a given call to map_dbl, all existing let-binders must first be lifted (there are 𝑛 · 𝑘 of them on the
𝑘-innermost-call) across map_dbl, one-at-a-time. Then the map_dbl adds another 𝑛 let binders, so
we end up doing

∑𝑚
𝑘=0 𝑛 · 𝑘 lifts, i.e., 𝑛 ·𝑚(𝑚 + 1)/2 rewrites just to lift the lets.

5.2 Microbenchmarks
Now we turn to evaluating performance of generated compilers. We start with microbenchmarks
focusing attention on particular aspects of reduction and rewriting, with Appendix C going into
more detail.

5.2.1 RewritingWithout Binders. Consider the code defined by the expression tree𝑛,𝑚 (𝑣) in Figure 2.
We want to remove all of the + 0s. There are Θ(𝑚 · 2𝑛) such rewriting locations. We can start
from this expression directly, in which case reification alone takes as much time as Coq’s rewrite.

iter𝑚 (𝑣) = 𝑣 + 0 + 0 + · · · + 0︸ ︷︷ ︸
𝑚

tree0,𝑚 (𝑣) = iter𝑚 (𝑣 + 𝑣)
tree𝑛+1,𝑚 (𝑣) = iter𝑚 (tree𝑛,𝑚 (𝑣) + tree𝑛,𝑚 (𝑣))

Fig. 2. Expressions computing initial code

As the reification method was not especially optimized,
and there exist fast reification methods [Gross et al.
2018], we instead start from a call to a recursive func-
tion that generates such an expression.
Figure 3a on the facing page shows the results for

𝑛 = 3 as we scale𝑚. The comparison points are Coq’s
rewrite!, setoid_rewrite, and rewrite_strat. The
first two perform one rewrite at a time, taking minimal advantage of commonalities across them
and thus generating quite large, redundant proof terms. The third makes top-down or bottom-up
passes with combined generation of proof terms. For our own approach, we list both the total time

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Accelerating Verified-Compiler Development with a Verified Rewriting Engine 1:19

and the time taken for core execution of a verified rewrite engine, without counting reification
(converting goals to ASTs) or its inverse (interpreting results back to normal-looking goals).

The comparison here is very favorable for our approach so long as𝑚 > 2. The competing tactics
spike upward toward timeouts at just around a thousand rewrite locations, while our engine is still
under two seconds for examples with tens of thousands of rewrite locations. When𝑚 < 2, Coq’s
rewrite! tactic does a little bit better than our engine, corresponding roughly to the overhead
incurred by our term representation (which, for example, stores the types at every application node)
when most of the term is in fact unchanged by rewriting. See subsection B.1for more detailed plots.

0 5,000 10,000 15,000

0

2

4

6

of rewrite locations

tim
e
(s
)

rewrite_strat bottomup
setoid_rewrite

rewrite_strat topdown
rewrite!

Our approach including reification, cbv, etc.
Our approach (only rewriting)

(a) No binders

0 1,000 2,000 3,000 4,000 5,000

0

20

40

60

of let binders

tim
e
(s
)

rewrite_strat bottomup
rewrite_strat topdown

setoid_rewrite
Our approach including reification, cbv, etc.

Our approach (only rewriting)

(b) Nested binders

0 5,000 10,000 15,000 20,000

0

5

10

15

20

25

𝑛 ·𝑚

tim
e
(s
)

rewrite_strat bottomup
rewrite_strat topdown
repeat setoid_rewrite

Our approach including reification, cbv, etc.
Our approach (only rewriting)

cps+vm_compute

(c) Binders and recursive functions

288 2182 2276 2370 2464 2558

10−3

10−2

10−1

100

prime

tim
e
re
la
tiv

e
to

or
ig
in
al
Fi
at

Cr
yp

to

Original Fiat Crypto (includes reification+rewriting)
Our approach w/ Coq’s VM

Our approach w/ extracted OCaml

(d) Fiat Cryptography

Fig. 3. Timing of different partial-evaluation implementations

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

1:20 Anon.

let 𝑣1 := 𝑣0 + 𝑣0 + 0 in
.
.
.

let 𝑣𝑛 := 𝑣𝑛−1 + 𝑣𝑛−1 + 0 in

𝑣𝑛 + 𝑣𝑛 + 0

Fig. 4. Initial code

5.2.2 Rewriting Under Binders. Consider now the code in Figure 4,
which is a version of the code above where redundant expressions
are shared via let bindings.
Figure 3b on the previous page shows the results. The compari-

son here is again very favorable for our approach. The competing
tactics spike upward toward timeouts at just a few hundred gener-
ated binders, while our engine is only taking about 10 seconds for
examples with 5,000 nested binders.

5.2.3 Performance Bottlenecks of Proof-Producing Rewriting. Although we have made our compari-
son against the built-in tactics setoid_rewrite and rewrite_strat, by analyzing the performance
in detail, we can argue that these performance bottlenecks are likely to hold for any proof assistant
designed like Coq. Detailed debugging reveals five performance bottlenecks in the existing rewriting
tactics, which we discuss in Appendix A.1

map_dbl(ℓ) =


[] if ℓ = []
let 𝑦 := ℎ + ℎ in if ℓ = ℎ :: 𝑡
𝑦 :: map_dbl(𝑡)

make(𝑛,𝑚, 𝑣) =


[𝑣, . . . , 𝑣︸ ︷︷ ︸

𝑛

] if𝑚 = 0

map_dbl(make(𝑛,𝑚 − 1, 𝑣)) if𝑚 > 0
example𝑛,𝑚 = ∀𝑣, make(𝑛,𝑚, 𝑣) = []

Fig. 5. Initial code for binders and recursive functions

5.2.4 Binders and Recursive Functions. The
next experiment uses the code in Figure 5.
Note that the let · · · in · · · binding blocks
further reduction ofmap_dbl whenwe iterate
it𝑚 times in make, and so we need to take
care to preserve sharing when reducing here.

Figure 3c compares performance between
our approach, repeat setoid_rewrite, and
two variants of rewrite_strat. Addition-
ally, we consider another option, which was
adopted by Fiat Cryptography at a larger
scale: rewrite our functions to improve reduction behavior. Specifically, both functions are rewritten
in continuation-passing style, which makes them harder to read and reason about but allows stan-
dard VM-based reduction to achieve good performance. The figure shows that rewrite_strat vari-
ants are essentially unusable for this example, with setoid_rewrite performing only marginally
better, while our approach applied to the original, more readable definitions loses ground steadily
to VM-based reduction on CPS’d code. On the largest terms (𝑛 ·𝑚 > 20, 000), the gap is 6s vs. 0.1s
of compilation time, which should often be acceptable in return for simplified coding and proofs,
plus the ability to mix proved rewrite rules with built-in reductions. Note that about 99% of the
difference between the full time of our method and just the rewriting is spent in the final cbv at
the end, used to denote our output term from reified syntax. We blame this performance on the
unfortunate fact that reduction in Coq is quadratic in the number of nested binders present; see Coq
bug #11151. This bug has since been fixed, as of Coq 8.14; see Coq PR #13537. See subsection C.3
for more on this microbenchmark.

5.2.5 Full Reduction. The final experiment involves full reduction in computing the Sieve of
Eratosthenes, taking inspiration on benchmark choice from Aehlig et al. [2008]. We find in Figure 6
that we are slower than vm_compute, native_compute, and cbv, but faster than lazy, and of course
much faster than simpl and cbn, which are quite slow.

5.3 Macrobenchmark: Fiat Cryptography

1This forward reference goes to an appendix included within the main submission page limit, to avoid interrupting the flow
in presenting the most important results.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://github.com/coq/coq/issues/11151
https://github.com/coq/coq/pull/13537

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Accelerating Verified-Compiler Development with a Verified Rewriting Engine 1:21

0 1,000 2,000 3,000 4,000 5,000

0

20

40

60

upper bound

tim
e
(s
)

simpl
cbn
lazy

Our approach including reification, cbv, etc.
Our approach (only rewriting)

cbv
vm_compute

native_compute

Fig. 6. Full evaluation, Sieve of Eratosthenes

Finally, we consider an experiment (described in more
detail in subsection B.2) replicating the generation of
performance-competitive finite-field-arithmetic code for
all popular elliptic curves by Erbsen et al. [2019]. In all
cases, we generate essentially the same code as they did,
so we only measure performance of the code-generation
process. We stage partial evaluation with three different
reduction engines (i.e., three Make invocations), respec-
tively applying 85, 56, and 44 rewrite rules (with only 2
rules shared across engines), taking total time of about
5 minutes to generate all three engines. These engines
support 95 distinct function symbols.
Figure 3d on page 19 graphs running time of three

different partial-evaluation and rewriting methods for
Fiat Cryptography, as the prime modulus of arithmetic
scales up. Times are normalized to the performance of
the original method of Erbsen et al. [2019], which relied
on standard Coq reduction to evaluate code that had been
manually written in CPS, followed by reification and a
custom ad-hoc simplification and rewriting engine.
As the figure shows, our approach gives about a 10×–1000× speed-up over the original Fiat

Cryptography pipeline. (We used the same set of prime moduli as in the experiments run by Erbsen
et al. [2019], which were chosen based on searching the archives of an elliptic-curves mailing list for
all prime numbers.) Inspection of the timing profiles of the original pipeline reveals that reification
dominates the timing profile; since partial evaluation is performed by Coq’s kernel, reification must
happen after partial evaluation, and hence the size of the term being reified grows with the size of
the output code. Also recall that the old approach required rewriting Fiat Cryptography’s library of
arithmetic functions in continuation-passing style, enduring this complexity in library correctness
proofs, while our new approach applies to a direct-style library. Finally, the old approach included
a custom reflection-based arithmetic simplifier for term syntax, run after traditional reduction,
whereas now we are able to apply a generic engine that combines both, without requiring more
than proving traditional rewrite rules.

The figure also confirms a clear performance advantage of running reduction in code extracted to
OCaml, which is possible because our plugin produces verified code in Coq’s functional language.
The extracted version is about 10× faster than running in Coq’s kernel.

6 RELATEDWORK, TAKE TWO
We have already discussed the work of Aehlig et al. [2008], which introduced the basic structure that
our engine shares, but which required a substantially larger trusted code base, did not tackle certain
challenges in scaling to large partial-evaluation problems, and did not report any performance
experiments in partial evaluation.
We have also mentioned Rtac [Malecha and Bengtson 2016], which provides tactics as proved

functions. Its rewrite tactic does not support preservation of subterm sharing, which is performance-
prohibitive for the kind of compilation that interested us. There is also no support (in Rtac or the
standard Coq tactics) for rewriting in normalization-by-evaluation order, which turns out to be
perfect for good performance scaling in these compilers.

Our implementation builds on fast full reduction in Coq’s kernel, via a virtual machine [Grégoire
and Leroy 2002] or compilation to native code [Boespflug et al. 2011]. Especially the latter is similar

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1:22 Anon.

in adopting an NbE style for full reduction, simplifying even under 𝜆s, on top of a more traditional
implementation of OCaml that never executes preemptively under 𝜆s. Neither approach unifies
support for rewriting with proved rules, and partial evaluation only applies in very limited cases,
where functions that should not be evaluated at compile time must have properly opaque definitions
that the evaluator will not consult. Neither implementation involved a machine-checked proof.
Boespflug [2009] discusses optimizations on (untyped) NbE for use in proof assistants. They

mention the reuse of metalanguage pattern-matching facilities on datatypes as an optimization,
wherein using metalanguage constructors for constants breaks modularity of the reduction engine.
We achieve this optimization while avoiding this issue by automatically creating on-the-fly a
datatype of constants as a sort of early compilation phase. This provides a way to have constructors
in the object language be represented as constructors in the metalanguage, in a typed NbE setting,
without breaking modularity nor incurring extra work for the user, for a minor upfront time cost.

A variety of forms of pragmatic partial evaluation have been demonstrated, with Lightweight
Modular Staging [Rompf and Odersky 2010] in Scala as one of the best-known current examples.
A kind of type-based overloading for staging annotations is used to smooth the rough edges in
writing code that manipulates syntax trees. The LMS-Verify system [Amin and Rompf 2017] can be
used for formal verification of generated code after-the-fact. Typically LMS-Verify has been used
with relatively shallow properties (though potentially applied to larger and more sophisticated code
bases than we tackle), not scaling to the kinds of functional-correctness properties that concern us
here, justifying investment in verified partial evaluators.

7 FUTUREWORK
By far the biggest next step for our engine is to integrate abstract interpretation with rewriting
and partial evaluation. We expect this would net us asymptotic performance gains as described
in subsubsection 5.1.6. Additionally, it would allow us to simplify the phrasing of many of our
post-abstract-interpretation rewrite rules, by relegating bounds information to side-conditions
rather than requiring that they appear in the syntactic form of the rule.
There are also a number of natural extensions to our engine. For instance, we do not yet allow

pattern variables marked as “constants only” to apply to container datatypes; we limit the mixing
of higher-order and polymorphic types, as well as limiting use of first-class polymorphism; we do
not support rewriting with equalities of nonfully-applied functions; we only support decidable
predicates as rule side conditions, and the predicates may only mention pattern variables restricted
to matching constants; we have hardcoded support for a small set of container types and their
eliminators; we support rewriting with equality and no other relations (e.g., subset inclusion); and
we require decidable equality for all types mentioned in rules. It may be helpful to design an engine
that lifts some or all of these limitations, building on the basic structure that we present here.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Accelerating Verified-Compiler Development with a Verified Rewriting Engine 1:23

REFERENCES
Klaus Aehlig, Florian Haftmann, and Tobias Nipkow. 2008. A Compiled Implementation of Normalization by Evaluation. In

Proc. TPHOLs.
Nada Amin and Tiark Rompf. 2017. LMS-Verify: Abstraction without Regret for Verified Systems Programming. In Proc.

POPL.
Brian Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack, and Stephanie Weirich. 2008. Engineering Formal

Metatheory. In Proc. POPL. 3–15. https://www.cis.upenn.edu/~bcpierce/papers/binders.pdf
U. Berger and H. Schwichtenberg. 1991. An inverse of the evaluation functional for typed 𝜆-calculus. In [1991] Proceedings

Sixth Annual IEEE Symposium on Logic in Computer Science. 203–211. https://doi.org/10.1109/LICS.1991.151645
Mathieu Boespflug. 2009. Efficient normalization by evaluation. In Workshop on Normalization by Evaluation (2009-08),

Olivier Danvy (Ed.). Los Angeles, United States. https://hal.inria.fr/inria-00434283
Mathieu Boespflug, Maxime Dénès, and Benjamin Grégoire. 2011. Full Reduction at Full Throttle. In Proc. CPP.
Adam Chlipala. 2008. Parametric Higher-Order Abstract Syntax for Mechanized Semantics. In ICFP’08: Proceedings of the

13th ACM SIGPLAN International Conference on Functional Programming. Victoria, British Columbia, Canada. http:
//adam.chlipala.net/papers/PhoasICFP08/

Nicolaas Govert De Bruijn. 1972. Lambda calculus notation with nameless dummies, a tool for automatic formula manip-
ulation, with application to the Church-Rosser theorem. In Indagationes Mathematicae (Proceedings), Vol. 75. Elsevier,
381–392.

Andres Erbsen, Jade Philipoom, Jason Gross, Robert Sloan, and Adam Chlipala. 2019. Simple High-Level Code For Cryp-
tographic Arithmetic – With Proofs, Without Compromises. In IEEE Security & Privacy. San Francisco, CA, USA.
http://adam.chlipala.net/papers/FiatCryptoSP19/

Jason Gross, Andres Erbsen, and Adam Chlipala. 2018. Reification by Parametricity: Fast Setup for Proof by Reflection, in
Two Lines of Ltac. In Proc. ITP. http://adam.chlipala.net/papers/ReificationITP18/

Benjamin Grégoire and Xavier Leroy. 2002. A compiled implementation of strong reduction. In Proc. ICFP.
Florian Haftmann and Tobias Nipkow. 2007. A Code Generator Framework for Isabelle/HOL. In Proc. TPHOLs.
Jason Hickey and Aleksey Nogin. 2006. Formal Compiler Construction in a Logical Framework. Higher-Order and Symbolic

Computation 19, 2 (2006), 197–230. https://doi.org/10.1007/s10990-006-8746-6
Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. 2014. CakeML: A Verified Implementation of ML.

In POPL ’14: Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (2014-01).
ACM Press, 179–191. https://cakeml.org/popl14.pdf

Xavier Leroy. 2009. A Formally Verified Compiler Back-end. J. Autom. Reason. 43, 4 (Dec. 2009), 363–446. http://gallium.
inria.fr/~xleroy/publi/compcert-backend.pdf

Gregory Malecha and Jesper Bengtson. 2016. Programming Languages and Systems: 25th European Symposium on Program-
ming, ESOP 2016, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven,
The Netherlands, April 2–8, 2016, Proceedings. Springer Berlin Heidelberg, Berlin, Heidelberg, Chapter Extensible and
Efficient Automation Through Reflective Tactics, 532–559. https://doi.org/10.1007/978-3-662-49498-1_21

Luc Maranget. 2008. Compiling Pattern Matching to Good Decision Trees. In Proceedings of the 2008 ACM SIGPLAN workshop
on ML. ACM, 35–46. http://moscova.inria.fr/~maranget/papers/ml05e-maranget.pdf

Tiark Rompf and Martin Odersky. 2010. Lightweight modular staging: A pragmatic approach to runtime code generation
and compiled DSLs. Proceedings of GPCE (2010). https://infoscience.epfl.ch/record/150347/files/gpce63-rompf.pdf

Zachary Tatlock and Sorin Lerner. 2010. Bringing Extensibility to Verified Compilers. In Proceedings of the 31st ACM
SIGPLAN Conference on Programming Language Design and Implementation (Toronto, Ontario, Canada, 2010) (PLDI ’10).
Association for Computing Machinery, New York, NY, USA, 111–121. https://doi.org/10.1145/1806596.1806611

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://www.cis.upenn.edu/~bcpierce/papers/binders.pdf
https://doi.org/10.1109/LICS.1991.151645
https://hal.inria.fr/inria-00434283
http://adam.chlipala.net/papers/PhoasICFP08/
http://adam.chlipala.net/papers/PhoasICFP08/
http://adam.chlipala.net/papers/FiatCryptoSP19/
http://adam.chlipala.net/papers/ReificationITP18/
https://doi.org/10.1007/s10990-006-8746-6
https://cakeml.org/popl14.pdf
http://gallium.inria.fr/~xleroy/publi/compcert-backend.pdf
http://gallium.inria.fr/~xleroy/publi/compcert-backend.pdf
https://doi.org/10.1007/978-3-662-49498-1_21
http://moscova.inria.fr/~maranget/papers/ml05e-maranget.pdf
https://infoscience.epfl.ch/record/150347/files/gpce63-rompf.pdf
https://doi.org/10.1145/1806596.1806611

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1:24 Anon.

A PERFORMANCE BOTTLENECKS OF PROOF-PRODUCING REWRITING
Althoughwe havemade our performance comparison against the built-in Coq tactics setoid_rewrite
and rewrite_strat, by analyzing the performance in detail, we can argue that these performance
bottlenecks are likely to hold for any proof assistant designed like Coq. Detailed debugging reveals
five performance bottlenecks in the existing rewriting tactics.

A.1 Bad performance scaling in sizes of existential-variable contexts
We found that even when there are no occurrences fully matching the rule, setoid_rewrite can
still be cubic in the number of binders (or, more accurately, quadratic in the number of binders with
an additional multiplicative linear factor of the number of head-symbol matches). Rewriting without
any successful matches takes nearly as much time as setoid_rewrite in this microbenchmark; by
the time we are looking at goals with 400 binders, the difference is less than 5%.
We posit that this overhead comes from setoid_rewrite looking for head-symbol matches

and then creating evars (existential variables) to instantiate the arguments of the lemmas for each
head-symbol-match location; hence even if there are no matches of the rule as a whole, there may
still be head-symbol matches. Since Coq uses a locally nameless representation [Aydemir et al.
2008] for its terms, evar contexts are necessarily represented as named contexts. Representing a
substitution between named contexts takes linear space, even when the substitution is trivial, and
hence each evar incurs overhead linear in the number of binders above it. Furthermore, fresh-name
generation in Coq is quadratic in the size of the context, and since evar-context creation uses fresh-
name generation, the additional multiplicative factor likely comes from fresh-name generation.
(Note, though, that this pattern suggests that the true performance is quartic rather than merely
cubic. However, doing a linear regression on a log-log of the data suggests that the performance is
genuinely cubic rather than quartic.)

Note that this overhead is inherent to the use of a locally nameless term representation. To fix it,
Coq would likely have to represent identity evar contexts using a compact representation, which is
only naturally available for de Bruijn representations. Any rewriting system that uses unification
variables with a locally nameless (or named) context will incur at least quadratic overhead on this
benchmark.

Note that rewrite_strat uses exactly the same rewriting engine as setoid_rewrite, just with a
different strategy. We found that setoid_rewrite and rewrite_strat have identical performance
when there are no matches and generate identical proof terms when there are matches. Hence we
can conclude that the difference in performance between rewrite_strat and setoid_rewrite is
entirely due to an increased number of failed rewrite attempts.

A.2 Proof-term size
Setting aside the performance bottleneck in constructing the matches in the first place, we can
ask the question: how much cost is associated to the proof terms? One way to ask this question
in Coq is to see how long it takes to run Qed. While Qed time is asymptotically better, it is still
quadratic in the number of binders. This outcome is unsurprising, because the proof-term size is
quadratic in the number of binders. On this microbenchmark, we found that Qed time hits one
second at about 250 binders, and using the best-fit quadratic line suggests that it would hit 10
seconds at about 800 binders and 100 seconds at about 2 500 binders. While this may be reasonable
for the microbenchmarks, which only contain as many rewrite occurrences as there are binders, it
would become unwieldy to try to build and typecheck such a proof with a rule for every primitive
reduction step, which would be required if we want to avoid manually CPS-converting the code in
Fiat Cryptography.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Accelerating Verified-Compiler Development with a Verified Rewriting Engine 1:25

The quadratic factor in the proof term comes because we repeat subterms of the goal linearly in
the number of rewrites. For example, if we want to rewrite f (f x) into g (g x) by the equation
∀ x, f x = g x, then we will first rewrite f x into g x, and then rewrite f (g x) into g (g x).
Note that g x occurs three times (and will continue to occur in every subsequent step).

A.3 Poor subterm sharing
How easy is it to share subterms and create a linearly sized proof? While it is relatively straightfor-
ward to share subterms using let binders when the rewrite locations are not under any binders, it
is not at all obvious how to share subterms when the terms occur under different binders. Hence
any rewriting algorithm that does not find a way to share subterms across different contexts will
incur a quadratic factor in proof-building and proof-checking time, and we expect this factor will
be significant enough to make applications to projects as large as Fiat Crypto infeasible.

A.4 Overhead from the let typing rule
Suppose we had a proof-producing rewriting algorithm that shared subterms even under binders.
Would it be enough? It turns out that even when the proof size is linear in the number of binders,
the cost to typecheck it in Coq is still quadratic! The reason is that when checking that f : T
in a context x := v, to check that let x := v in f has type T (assuming that x does not occur
in T), Coq will substitute v for x in T. So if a proof term has 𝑛 let binders (e.g., used for sharing
subterms), Coq will perform 𝑛 substitutions on the type of the proof term, even if none of the let
binders are used. If the number of let binders is linear in the size of the type, there is quadratic
overhead in proof-checking time, even when the proof-term size is linear.

We performed a microbenchmark on a rewriting goal with no binders (because there is an obvious
algorithm for sharing subterms in that case) and found that the proof-checking time reached about
one second at about 2 000 binders and reached 10 seconds at about 7 000 binders. While these results
might seem good enough for Fiat Cryptography, we expect that there are hundreds of thousands of
primitive reduction/rewriting steps even when there are only a few hundred binders in the output
term, and we would need let binders for each of them. Furthermore, we expect that getting such
an algorithm correct would be quite tricky.
Fixing this quadratic bottleneck would, as far as we can tell, require deep changes in how

Coq is implemented; it would either require reworking all of Coq to operate on some efficient
representation of delayed substitutions paired with unsubstituted terms, or else it would require
changing the typing rules of the type theory itself to remove this substitution from the typing rule
for let. Note that there is a similar issue that crops up for function application and abstraction.

A.5 Inherent advantages of reflection
Finally, even if this quadratic bottleneck were fixed, Aehlig et al. [2008] reported a 10×–100×
speed-up over the simp tactic in Isabelle, which performs all of the intermediate rewriting steps via
the kernel API. Their results suggest that even if all of the superlinear bottlenecks were fixed—no
small undertaking—rewriting and partial evaluation via reflection might still be orders of magnitude
faster than any proof-term-generating tactic.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

