
10 Years of Superlinear Slowness in Coq

Jason Gross12 and Andres Erbsen2

1 Machine Intelligence Research Institute, Berkeley, CA, USA
2 MIT CSAIL, Cambridge, MA, USA

{jgross,andreser}@mit.edu

Context

In most programming languages, asymptotic performance issues can almost always be explained
by reference to the algorithm being implemented. At most, the standard asymptotic perfor-
mance of explicitly used operations on chosen data structures must be considered. Even the
constant factors in performance bottlenecks can often be explained without reference to the
implementation of the interpreter, compiler, nor underlying machine.

In 10+ years of working with Coq, we (Jason, Andres, and our colleagues) have found
this pattern, which holds across multiple programming languages, to be the exception rather
than the rule in Coq! This turns performant proof engineering, especially performant proof
automation engineering, from straightforward science into unpredictable and fragile guesswork.

By presenting in detail a sampling of examples, we propose a defense of the thesis: Perfor-
mance bottlenecks in proof automation almost always result from inefficiencies in parts of the
system which are conceptually distant from the theorem being proven. Said another way, de-
bugging, understanding, and fixing performance bottlenecks in automated proofs almost always
requires extensive knowledge of the proof engine, and almost never requires any domain-specific
knowledge of the theorem being proven. Further, there is no clear direction of improvement:
We know of no systematic proposal, nor even folklore among experts, of what primitives and
performance characteristics are sufficient for a performant proof engine.

We hope to start a discussion on the obvious corollary of this thesis: This should not be!
Our presentation, we hope, will serve as a call for a POPLMark for Proof Engines, a call for

designing and implementing a proof engine for scalable performant modular proof automation.

Presentation

There are three qualities of our experience with engineering proof automation that we hope to
drive home to our audience:

1. Coq performance bottlenecks are often superlinear, sometimes even exponential.

2. Solving Coq performance bottlenecks is like playing whack-a-mole. The experience is
broadly predictable—certain areas of the system are at fault more often than others—but
seemingly random in any specific instance. Futhermore, there is (almost) always another
performance issue lurking around the corner when you want to scale the same proof
technique to larger applications.

3. Understanding Coq performance bottlenecks involves knowing many unrelated facts, not
learning a coherent framework. Almost always, these facts feel like historical accidents.
The explanation of any given bottleneck is more often than not “the thing that happened
to work for small proofs has inadequate asymptotics” and not “the implementors made a
deliberate tradeoff or a mistake in analysis or implementation”.



10 Years of Superlinear Slowness in Coq Jason Gross and Andres Erbsen

Example 1: Four Thousand Millenia is Too Long!

We propose to present first the example of Section 2.2 of “Performance Engineering of Proof-
Based Software Systems at Scale” [Gro21]. This is an example from Fiat Cryptography which
involved generating C code to do arithmetic on very large numbers. The code generation was
parameterized on the number of machine words needed to represent a single big integer. Our
smallest toy example used two machine words; our largest example used 17. The smallest toy
example took about 14 seconds. We were never able to compile the largest example, but based
on the the compile-time performance of about a hundred smaller examples, we expect it would
have taken over four thousand millennia, all spent in needless conversion!

We may also present a whirlwind tour of tactics that can do unexpected conversion, including
tactics that shouldn’t be doing conversion at all, tactics that have a non-obvious need to do
conversion, and tactics that result in bad or duplicated conversion during Qed.

We hope these examples will give the audience a taste of what it’s like to work in an
exponential domain, as well as of the whack-a-mole quality of resolving performance bottlenecks.

Example 2: The Slowness of Evars and Contexts

We plan to present performance bottlenecks in either the example of proving well-formedness of
large PHOAS trees, or in proving weakest-precondition correctness of algorithms like CHACHA20.
In both of these examples, performance issues in context- and evar-management make the proof
engine unusably slow. We may present our reflective solution to the problem as a demonstration
of the pain of working around performance issues. We hope that this example will give the audi-
ence some understanding of what it looks like for performance bottlenecks to be simultaneously
pervasive and far from the problem being solved.

Example 3: Rewriting is Hard

One of the most oft-used forms of proof automation is equational reasoning. Coq’s built-in
rewriting tactics are frequent performance bottlenecks in proofs involving equational issues.
Often the performance of rewriting scales superlinearly in variables that should should add at
most constant overhead to rewriting, such as the number of occurences of the head constant
even when there are no matches of the full pattern.

One especially tricky problem is ensuring that rewrite performance scales linearly along all
the axes it should. For example, autorewrite is superlinear in the number of rewrites because it
duplicates the entire goal for every rewrite. While rewrite_strat fixes this particular problem,
it is still superlinear in the number of binders under which rewriting occurs. Designing an
adequately performant rewrite on top of a modular proof engine is an interesting challenge.

We plan to sketch out the challenges of designing such a rewriting tactic, and, time-
permitting, we may present an algorithm that is capable of generating linearly-sized proof
terms. Relevantly, even these linearly-sized proof terms cannot be checked by Coq in linear
time, despite the fact that this should be possible in theory!

See also “Performance Bottlenecks of Proof-Producing Rewriting” in Section 4.5.1 of [Gro21].

References

[Gro21] Jason S. Gross. “Performance Engineering of Proof-Based Software Systems at Scale”.
PhD Thesis. Massachusetts Institute of Technology, Feb. 2021. url: https://jasongross.
github.io/papers/2021-JGross-PhD-EECS-Feb2021.pdf.

2

https://jasongross.github.io/papers/2021-JGross-PhD-EECS-Feb2021.pdf
https://jasongross.github.io/papers/2021-JGross-PhD-EECS-Feb2021.pdf

