Guarantees-Driven Mechanistic Interpretability

Formal Proof Size as a Metric for Mechanistic Detail of Understanding

FAR Seminar, Feb 21

Jason Gross

Collaborators: Rajashree Agrawal, Alex Gibson, Chun Hei Yip, Euan Ong, Somsubhro Bagchi, Soufiane Noubir, Thomas Kwa Funded by ARC Theory

Loosely advised by Paul Christiano, distillation and write-up additionally co-authored with Lawrence Chan

This talk in three bullet points

Motivation: If we got AGI tomorrow, what would we need to trust any pipeline we build to scalably automate mechanistic explanation discovery?

Solution: Trustworthiness via math (aka formal proof)

Remaining bottleneck: Unstructured noise

Why mech interp?

Al alignment; might help with:

- Catching deception
- Mechanistic anomaly detection (MAD)
- Adversarial training
- Elicit latent knowledge (ELK)
- Provide feedback

Actual causal/historical reason, in my case:

• Neel Nanda's modular grokking write up is cool!

What is "mechanistic"?

Intuition: "bottom-up"

"Mechanistic interpretability seeks to reverse engineer neural networks, similar to how one might reverse engineer a compiled binary computer program." —Chris Olah

"Mechanistic refers to the emphasis on trying to understand the actual mechanisms and algorithms that compose the network"

-Neel Nanda

These are actually about *faithfulness* of mechanism — how closely mechanisms corresponds to the mechanisms the model uses

Quotes from <u>https://transformer-circuits.pub/2022/mech-interp-essay/index.html</u> <u>https://dynalist.io/d/n2ZWtnoYHrU1s4vnFSAQ519J#z=eL6tFQqNwd4LbYIO1DVIen8K</u>

How do we evaluate "mechanistic"?

Existing methods all focus on *faithfulness*

- Casual Scrubbing
- Activation Patching
- Path Patching

We have nothing for *level of mechanistic detail*

Problem 1: Existing metrics are too easy to Goodhart

The brute-force explanation

"I ran the model" i.e., trace the model's computation on all relevant inputs 100% faithful!

100% bottom-up!

100% useless for many applications!

(also intuitively unsatisfactory)

Very important if we ever want to automate interpretability!

What's wrong?

- 1. Infeasible to produce
- 2. Does not match intuition on "mechanistic"

Common cause:

The explanation is 'too long'

Problem 2

Existing metrics are limited in what hypotheses they permit

Generally restricted to identifying (sparse) computational subgraphs

Can we get away with minimalism? Mechanistic detail $\propto 1/(description length of formal proof)$

"Mechanistic" = "allows compacting explanation"

Consider theorems that a particular model M achieves a certain level of performance:

$\mathbb{E}[f(x, M(x))] > b$

Goal: minimize proof length (in any formal system) for fixed b; or: maximize b for fixed proof length

Can we get away with minimalism? Mechanistic detail $\propto 1/(description length of formal proof)$ What is a proof?

Theorem: $\mathbb{E}[f(x, M(x))] > b$

Goal: minimize proof length (in any formal system) for fixed b; or: maximize b for fixed proof length

Our proofs consist of two components:

- 1. Proof that a particular computation C, when run with any model's weights, produces a valid bound on that model's performance
- 2. A trace of running C proving that C(M) = b

Outline of the Technical Part of the Talk

Goal: walkthrough of a toy model to assess this definition of mechanistic detail

- Toy algorithmic task
- Small transformer architecture
- Basic model interpretation
- Proof Size vs. Tightness of Bound (table of proofs with four complexities)
- Sketch of the proof at each complexity
- Noise problem
- Conclusions, Limitations, & Future Work

Anchor: Tying mechanistic detail and size of proof

Model Setup: Task

Accuracy: argmax(model(xs)[-1]) == max(xs)

Loss: softmax(model(xs)[-1])[max(xs)]

model([40,**62**,3,0]) == [[_, _, _, [-10, -16, -18, ..., 16.8, **32.6**, 0.6]]] (position 62 = 64 - 2)

Model Setup

1L, attn-only, no layernorm 1 attn head d_vocab = 64 d_head = d_model = 32 n_ctx = 4

The **attention head** terms describe the effects of attention heads in linking input tokens to logits. A^h describes which tokens are attended to while $W_U W_{OV}^h W_E$ describes how each token changes the logits if attended to.

where
$$A_{q,k}^h = \operatorname{softmax}^* \left((t_q \cdot W_E + (W_{\text{pos}})_q) \cdot W_Q W_K^T (W_E^T \cdot t_k^T + (W_{\text{pos}})_k^T) \right)$$

Softmax with autoregressive masking

contributes

to bigram

statistics.

Attention pattern logits are produced by multiplying pairs of tokens through different sides of W^h_{OK} .

Image from https://transformer-circuits.pub/2021/framework/index.html#onel-path-expansion

Basic Mech Interp: Attend More to Bigger Tokens & Copy

Attention Score $\mathsf{EQKE} := (\mathsf{W}_{\mathsf{E}} + \mathsf{W}_{\mathsf{pos}}[-1])\mathsf{W}_{\mathsf{Q}}\mathsf{W}_{\mathsf{K}}^{\mathsf{T}}(\mathsf{W}_{\mathsf{E}} + \mathbb{E}_{\mathsf{p}}\mathsf{W}_{\mathsf{pos}}[\mathsf{p}])^{\mathsf{T}}$

Attention Computation (centered) EVOU := $(W_E + \mathbb{E}_p W_{pos}[p])W_V W_O W_U$ EVOU - EVOU.diag()[:, None]

40

14

Results: Proof Size vs. Tightness of Bound

Description of Proof	Complexity Cost Budget	Bound
Brute force	Exponential: d_vocab ^{n_ctx} n_ctx d_vocab d_model	99.73%
Convexity of Softmax	Cubic: d_vocab ³ n_ctx ²	98.4%
Sub-cubic	d_vocab ² n_ctx ² + d_vocab²d_model	54.5% - 56.9%
low-rank avg+diff on EU, QK	d_vocab ² n_ctx ² + d_vocab d_model² + (OV only) d_vocab ² d_model	48.9% – 54.8% (27.8% – 33.2% if via SVD)
Convex Hull on OV (WIP)	d_vocab ² n_ctx ² + d_vocab d_model ²	WIP

What do & don't we understand?

where

$$T_{i} = (t_{i} \cdot W_{E} + (W_{\text{pos}})_{i})W_{U} + \sum_{h \in H} \sum_{k} A_{i,k}^{h}(t_{k} \cdot W_{E} + (W_{\text{pos}})_{k})W_{V}^{h}W_{O}^{h}W_{U}$$

$$\prod_{k \in H} \sum_{k} A_{i,k}^{h}(t_{k} \cdot W_{E} + (W_{\text{pos}})_{k})W_{V}^{h}W_{O}^{h}W_{U}$$

$$\prod_{k \in H} \sum_{k} A_{i,k}^{h}(t_{k} \cdot W_{E} + (W_{\text{pos}})_{k})W_{V}^{h}W_{O}^{h}W_{U}$$

$$\prod_{k \in H} \sum_{k} A_{i,k}^{h}(t_{k} \cdot W_{E} + (W_{\text{pos}})_{k})W_{V}^{h}W_{O}^{h}W_{U}$$

$$\prod_{k \in H} \sum_{k} A_{i,k}^{h}(t_{k} \cdot W_{E} + (W_{\text{pos}})_{k})W_{V}^{h}W_{O}^{h}W_{E}$$

$$M_{i} = \text{softmax}^{*}\left(\left(t_{q} \cdot W_{E} + (W_{\text{pos}})_{q}\right) \cdot W_{Q}^{h}W_{K}^{h}^{T}(W_{E}^{T} \cdot t_{k}^{T} + (W_{\text{pos}})_{k}^{T})\right)$$

$$M_{i} = \text{softmax}^{*}\left(\left(t_{q} \cdot W_{E} + (W_{\text{pos}})_{q}\right) \cdot W_{Q}^{h}W_{K}^{h}^{T}(W_{E}^{T} \cdot t_{k}^{T} + (W_{\text{pos}})_{k}^{T})\right)$$

$$M_{i} = \text{softmax}^{*}\left(\left(t_{q} \cdot W_{E} + (W_{\text{pos}})_{q}\right) \cdot W_{Q}^{h}W_{K}^{h}^{T}(W_{E}^{T} \cdot t_{k}^{T} + (W_{\text{pos}})_{k}^{T})\right)$$

$$M_{i} = \text{softmax}^{*}\left(\left(t_{q} \cdot W_{E} + (W_{\text{pos}})_{q}\right) \cdot W_{Q}^{h}W_{K}^{h}^{T}(W_{E}^{T} \cdot t_{k}^{T} + (W_{\text{pos}})_{k}^{T})\right)$$

$$M_{i} = \text{softmax}^{*}\left(\left(t_{q} \cdot W_{E} + (W_{\text{pos}})_{q}\right) \cdot W_{Q}^{h}W_{K}^{h}^{T}(W_{E}^{T} \cdot t_{k}^{T} + (W_{\text{pos}})_{k}^{T})\right)$$

$$M_{i} = \text{softmax}^{*}\left(\left(t_{q} \cdot W_{E} + (W_{\text{pos}})_{q}\right) \cdot W_{Q}^{h}W_{K}^{h}^{T}(W_{E}^{T} \cdot t_{k}^{T} + (W_{\text{pos}})_{k}^{T})\right)$$

$$M_{i} = \text{softmax}^{*}\left(\left(t_{q} \cdot W_{E} + (W_{\text{pos}})_{q}\right) \cdot W_{Q}^{h}W_{K}^{h}^{T}(W_{E}^{T} \cdot t_{k}^{T} + (W_{\text{pos}})_{k}^{T})\right)$$

$$M_{i} = \text{softmax}^{*}\left(\left(t_{q} \cdot W_{E} + (W_{\text{pos}})_{q}\right) \cdot W_{Q}^{h}W_{K}^{h}^{T}(W_{E}^{T} \cdot t_{k}^{T} + (W_{\text{pos}})_{k}^{T})\right)$$

$$M_{i} = \text{softmax}^{*}\left(\left(t_{q} \cdot W_{E} + (W_{pos})_{q}\right) \cdot W_{Q}^{h}W_{K}^{h}^{T}(W_{E}^{T} \cdot t_{k}^{T} + (W_{pos})_{k}^{T})\right)$$

$$M_{i} = \text{softmax}^{*}\left(t_{i} + W_{i} + W_{i}$$

different sides of W_{OK}^h .

Image from https://transformer-circuits.pub/2021/framework/index.html#onel-path-expansion

What do & don't we understand?

@(d_vocab^{n_ctx}n_ctx d_vocab d_model)

Brute force accuracy: 99.73% (16,777,216 sequences)

 $\mathcal{O}(d_vocab^3n_ctx^2)$

Accuracy with cubic proof: 98.4% (1,048,576 sequences)

$\mathcal{O}(d_vocab^2n_ctx^2 + d_vocab^2d_model)$ Accuracy with sub-cubic proof: $\approx 55\%$ ($\approx 65,536$ sequences)

Mechanistic detail in proofs: d_vocab²d_model ⇒ d_vocab d_model²

Attention Score Attention SVD $\mathsf{EQKE} := (\mathsf{W}_{\mathsf{E}} + \mathsf{W}_{\mathsf{pos}}[-1])\mathsf{W}_{\mathsf{Q}}\mathsf{W}_{\mathsf{K}}^{\mathsf{T}}(\mathsf{W}_{\mathsf{E}} + \mathbb{E}_{\mathsf{p}}\mathsf{W}_{\mathsf{pos}}[\mathsf{p}])^{\mathsf{T}}$ Query-Side SVD Singular Values Key-Side SVD query token Query Token Key Token -100 -200 key token

(best bound with another ~SVD-complexity method: \approx 5.67) ₂₃

Conclusions

- Proofs *are* possible!!!!!
 - But really hard
- Small noise is a problem (no mechanistic understanding)
 - Most existing work glosses over this
 - Do we even want an explanation of it?
- Proofs can be used as a minimalist "grounding" of mech interp
 - Confused about X in mech interp \Rightarrow convert to proof frame
- Link between mechanistic understanding and proof length
 - Shorter proofs require more mechanistic understanding
 - After improving bound tightness (fixed complexity), we can extract mechanistic detail
 - \circ Failure to compact proof \Rightarrow lack mechanistic understanding
- Objective, numerical standard for mechanistic detail
 - Can be tailored to subcomponents

Limitations & Future Work

In progress:

- Max of 10
- Modular addition (including MLPs)
- Sorted list

How to solve noise?

- Lagrange multiplier on various parts of the proof
- Heuristic arguments

Limitations / Future Work:

- 2L
- Layer norm on > 1L
- SAEs
- Automation

Thank You!