
We implement many proof strategies, which 
incorporate varying degrees of mechanistic 
detail...

... and find that more mechanistic detail 
results in tighter performance bounds. 
Moreover, for any given proof length, proving 
a tighter performance bound requires more 
mechanistic detail.
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We formalize post-hoc mechanistic 
interpretability as proving worst-case 
generalization bounds on the performance of 
models. 

We define a bound approximation algorithm; 
a proof is the trace of running the algorithm 
along with an explanation that it provides 
valid lower bounds on every input.

We can run inference on various inputs to 
guarantee model performance on those 
inputs. Can mechanistic understanding 
provide a compression of model behavior 
that beats this inefficient baseline?
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Compact Proofs of Model Performance 

via Mechanistic Interpretability

We use mechanistic understanding 
to compress proofs of model 
performance on toy transformers

We identify compounding approximation 
error in post-hoc analysis as a key challenge 
to proving worst-case bounds. 

We prototype the proofs-based approach to 
formal interpretability on transformer models 
trained on the the max_of_k task. 
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