
We confirm this interpretation by using it 
to compactly bound error in the network 
approximation.
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Finite MLPs can be treated 
as analytic approximations 
of infinite width MLPs
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We build upon Nanda 2023 and Zhong 2023  
interpretations of the “pizza” modular 
addition transformer model, which has a 
black-box treatment of its MLP.

ReLU([0.530x − 1.135y + 0.253, −0.164x − 1.100y + 0.205, 1.210x − 0.370y + 0.198, −0.478x −

1.072y + 0.215, −1.017x + 0.799y + 0.249, 0.342x − 0.048y + 0.085, 1.149x − 0.598y +

0.212, −0.443x + 1.336y + 0.159, −1.580x − 0.000y + 0.131, −1.463x + 0.410y + 0.178, 1.038x +

0.905y + 0.190, 0.568x + 1.188y + 0.128, 0.235x − 1.337y + 0.164, −1.180x + 1.052y +

0.139, −0.173x+0.918y +0.148, −0.200x+1.060y +0.173, −1.342x+0.390y +0.256, 0.105x−

1.246y + 0.209, 0.115x + 1.293y + 0.197, 0.252x + 1.247y + 0.140, −0.493x + 1.252y +

0.213, 1.120x + 0.262y + 0.239, 0.668x + 1.096y + 0.205, −0.487x − 1.302y + 0.145, 1.134x −

0.862y + 0.273, 1.143x + 0.435y + 0.171, −1.285x − 0.644y + 0.142, −1.454x − 0.285y +

0.218, −0.924x+1.068y +0.145, −0.401x+0.167y +0.106, −0.411x−1.389y +0.249, 1.422x−

0.117y + 0.227, −0.859x − 0.778y + 0.121, −0.528x − 0.216y + 0.097, −0.884x − 0.724y +

0.171, 1.193x+0.724y+0.131, 1.086x+0.667y+0.218, 0.402x+1.240y+0.213, 1.069x−0.903y+

0.120, 0.506x − 1.042y + 0.153, 1.404x − 0.064y + 0.152, 0.696x − 1.249y + 0.199, −0.752x −

0.880y + 0.106, −0.956x − 0.581y + 0.223]).



For the first principal unembedding dimension, it will be taken dot product with



[1.326, 0.179, 0.142, −0.458, 1.101, −0.083, 0.621, 1.255, −0.709, 0.123, −1.346, −0.571, 1.016,

1.337, 0.732, 0.839, 0.129, 0.804, 0.377, 0.078, 1.322, −1.021, −0.799, −0.339, 1.117, −1.162,

−1.423, −1.157, 1.363, 0.156, −0.165, −0.451, −1.101, −0.572, −1.180, −1.386, −1.346, −0.226,

1.091, 1.159, −0.524, 1.441, −0.949, −1.248].
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Brute-force

While we cannot compactly describe the 
behavior of 128 MLP neurons individually, we 
look for continuous functions capturing the 
aggregate input behavior, treating the 
finite-width MLP as an approximation of 
some infinite-width counterpart.   

We apply amplitude-phase Fourier 
transforms to rewrite each neuron’s input 
and output maps. Neurons are single 
frequency with kin = kout, output map phases 
are 2× the input map phase, and the phases 
are uniformly distributed.

We can sort the neurons by phase and plot 
one rectangle for each neuron. Given the 
input x + y, the contributions of neurons to 
the z = x + y logit look remarkably like 
numerical integration.

We plot here

x + y = z = 0.


