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How should theorem provers work?




How theorem provers should work:

Cog, is this No; here’s a

proof of
?
correct: 1 = 0 - False




How theorem provers should work:

Theorem (currying) : (C1 - (Cy — D)) = (Cy X Cy » D)
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How theorem provers should work:

Theorem (currying) : (61 - (Cy — D)) = (CyxXCy - D)
Proof: howmework ®

Theorem currying : (C1 - (C, - D)) = (Cy xC, » D).
Proof.

trivial.
Qed.




How theorem provers should work:

| Theorem (currying) : (€y - (€3 » D)) = (€Cy X C, > D)
Proof: —: F = A (cq, €2). F(c1)(c); morphisms similarly

—:F = Acy.Acy. F(cq, €2); worphisms similarly
Functoriality, naturality, and congruence: straightforward.

Theorem currying : (C1 - (C, - D)) = (Cy xC, » D).
Proof.

esplit.

{ by refine (Ag (F = (Af (c = F, ¢1 ¢3))))- }

{ by refine (Ag (F = (A (¢; = (Ap (c2 » Fy (c1,¢2))))))). }

all: trivial.
Qed.




How theorem provers should work:

| Theorem (currying) : (€y - (€3 » D)) = (€Cy X C, > D)
Proof: —: F = A (cq, €2). F(c1)(c); morphisms similarly

—:F = Acy.Acy. F(cq, €2); worphisms similarly
Functoriality, naturality, and congruence: straightforward.

Theorem currying : (C1 - (C, - D)) = (Cy xC, » D).
Proof.
esplit.
{by refine (AF (F = (AF (C = Fo €1 Cz) (S dmw (Fo dl)m my o (Fm ml)o 52))
(FGT = (A1t (c = Tcic)) )
{ by refine (Ag (F = (Ag (c; P (Ap (cz P F, (€1,¢2)) (sdm » K, (1,m))))
(FGT » (A (cg » (A1 (c2 » T (c1,¢2)))). }
all: trivial.
Qed.




How theorem provers do work:

Theorem (currying) : (61 - (Cy — D)) = (CyxXCy - D)

Proof: —: F = A (cq, €2). F(c1)(c); morphisms similarly ~0s
—:F = Acy.Acy. F(cq, €2); worphisms similarly

Fuwc‘coriatita, naturality, and congruence: straightforward. _
—
17s 2m 46 s I1! (5 s, if we use UIP)

Theorem currying : (C1 - (C, - D)) = (Cy xC, » D).
Proof.
esplit.
{ by refine (AF (F = (AF (C = Fo €1 Cz) (S dmw (Fo dl)m my o (Fm ml)o 52))
(FGT = (Ar (c = T ¢1 ¢3)))). }
{ by refine (Ag (F = (Ag (1 P (Ap (c2 P F, (€1,¢2)) (s d m — Fy (1,m))))
(FGT = (A (c1 = (A1 (c2 = T (c1,¢2))))))- }
all: trivial.
Qed.




Performance is important!

If we’re not careful, obvious or trivial things can be
very, very slow.




Why you should listen to me

Theorem : You should listen to me.
Proof.

by experience.
Qed.




Why you should listen to me

Category theory in Coq: https://github.com/HoTT/HoTT
(subdirectory theories/categories):

Concepts Formalized: .

Exponential laws

1-precategories (in the sense of the HoTT Book)
univalent/saturated categories (or just categories, in the HoTT Book)
functor precategories C —» D
dual functor isomorphisms Cat — Cat; and (C - D)°P — (C°P — D°P)
the category Prop of (U-small) hProps
the category Set of (U-small) hSets
the category Cat of (U-small) strict (pre)categories (strict in the sense of the
objects being hSets)
pseudofunctors
pseudonatrual transformations
(op)lax comma categories
profunctors
. identity profunctor (the hom functor C°P X C — Set)
adjoints
. equivalences between a number of definitions:
. unit-counit + zig-zag definition
. unit + UMP definition
. counit + UMP definition
. universal morphism definition
. hom-set definition
. composition, identity, dual

»  pointwise adjunctions in the library, GE 4 F¢ and EF < C¢ from an

adjunction F 4 G for functors F: C S D: G and E a precategory
Yoneda lemma

. C° = 1; 0¢ = 0 given an object in C
. Ct=c¢C;1¢=1
«  CAYB=(CcAx(CE
s (AXB)‘= A®x B¢
. (AB)CE ABXC
Product laws
. CxD=DxC
. Cx0=0xC=0
. Cxl=1xC=C
Grothendieck construction (oplax colimit) of a pseudofunctor to Cat
Category of sections (gives rise to oplax limit of a pseudofunctor to Cat when
applied to Grothendieck construction
functor composition is functorial (there's a functor A: (C - D) - (D -
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https://github.com/HoTT/HoTT

Presentation is not mainly about:



Presentation is not mainly about:

» category theory or diagram chasing
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Presentation is not mainly about:

e category theory or diagram chasing

 the mathematical conten
of the library
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Presentation is not mainly about:

* category theory or diagram chasing 3 % ws ¢ 4

 the mathematical content

of the library

* Coq
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Presentation is not mainly about:
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 the mathematical content
of the library

e Coq (though what | say might not always generalize nicely)

16



Presentation is about:

performance \ @

the design of proof assistants and type theories to
assist with performance

the kind of performance issues | encountered

an overview of the content of the HoTT/HoTT library
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Presentation is for:

* Homotopy type theorists
 Who are interested in the HoTT/HoTT library

e Users of proof assistants (and Coq in particular)
 Who want to make their code faster

* Designers of (type-theoretic) proof assistants
 Who want to know where to focus their optimization efforts



Outline

* Why should we care about performance?
* Overview of the HoTT/HoTT library

* What makes theorem provers (mainly Coq) slow?

. ‘ o A
Examples of particular slowness N E> g"

* For users (workarounds)
* Arguments vs. fields and packed records
e Abstraction barriers ﬁ

* For developers (features)
* Primitive projections

Dam image from http://www.flickr.com/photos/gammaman/7803829282/ by Eli Christman, CC by 2.0



http://www.flickr.com/photos/gammaman/7803829282/
https://creativecommons.org/licenses/by/2.0/

HoTT/HoTT Library: Contents

* Basic type formers and their identity types
* h-levels, object classifier, ...

* Many examples of HITs from the book:

* Circle, interval, suspensions, flattening, truncations,
guotients

e (V) =7Z
* Modalities (reflective subtoposes)
e Spaces: Cantor, Finite, Surreals, ...
* Categories



HOTT/HOTT Library: Diagram
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Performance

* Question: What makes programs, particularly theorem
provers or proof scripts, slow?




Performance

* Question: What makes programs, particularly theorem
provers or proof scripts, slow?

* Answer: Doing too much stuff!

24



Performance

* Question: What makes programs, particularly theorem
provers or proof scripts, slow?

* Answer: Doing too much stuff!
* doing the same things repeatedly

25
Snail from http://naolito.deviantart.com/art/Repetitive-task-258126598



Performance

* Question: What makes programs, particularly theorem
provers or proof scripts, slow?

* Answer: Doing too much stuff!
* doing the same things repeatedly

* doing lots of stuff for no good reason

Running rooster from http://d.wapday.com:8080/animation/ccontennt/15545-f/mr_rooster_running.gif



Performance

* Question: What makes programs, particularly theorem
provers or proof scripts, slow?

* Answer: Doing too much stuff!
* doing the same things repeatedly

* doing lots of stuff for no good reason

e using a slow language when you could be
using a quicker one



Proof assistant performance

 What kinds of things does Coq do?

* Type checking
e Term building
e Unification

* Normalization



Proof assistant performance (pain)

e When are these slow?

* when you duplicate work

* when you do work on a part of a term you end up not caring
about

* when you do them too many times

* when your term is large



Proof assistant performance (size)

 How large is slow?



Proof assistant performance (size)

 How large is slow?
 Around 150,000—500,000 words



100s
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1.0E+0

Durations of Various Tactics vs. Term Size (Coq v8.4, 2.4 GHz Intel Xeon CPU, 16 GB RAM)
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@ destruct x (v8.4)

@ assert (z :=true); destruct z (v8.4)

®set (y :=x) (v8.4)
set (y := bool) (v8.4)

@ lazymatch goal with |- ?f ?a = ?g ?b => let H := constr:(@f_equal bool bool f a b
(@eq_refl bool a)) in apply H end (v8.4)

@ apply f_equal (v8.4)

@ generalize x (v8.4)

@ assert (z :=true); generalize z (v8.4)

@ lazymatch goal with |- ?f ?a = ?g ?b => let H := constr:(@f_equal bool bool f a b
(@eq_refl bool a)) in exact H end (v8.4)

@ match goal with |- ?G => set (y := G) end (v8.4)

@ lazymatch goal with |- ?f ?a = ?g ?b => let H := constr:(@f_equal bool bool f a b

(@eq_refl bool a)) in exact_no_check H end (v8.4)

@ lazymatch goal with |- ?f ?a = ?g ?b => let H := constr:(@f_equal bool bool fa b
(@eq_refl bool a)) in idtac end (v8.4)

® lazymatch goal with |- ?f ?a = ?g ?b => let H := constr:(@f_equal bool bool f a b)
in idtac end (v8.4)

® assert (z :=true); revert z (v8.4)

® lazymatch goal with |- ?f ?a = ?g ?b => idtac end (v8.4)
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Durations of Various Tactics vs. Term Size (Coq v8.6, 3.5 GHz Intel i7 CPU, 64 GB RAM)
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@ destruct x (v8.6)

@ assert (z :=true); destruct z (v8.6)

®set (y :=x) (v8.6)
set (y := bool) (v8.6)

@ lazymatch goal with |- ?f ?a = ?g ?b => let H := constr:(@f_equal bool bool f a b
(@eq_refl bool a)) in apply H end (v8.6)

@ apply f_equal (v8.6)

@ generalize x (v8.6)

@ assert (z :=true); generalize z (v8.6)

@ lazymatch goal with |- ?f ?a = ?g ?b => let H := constr:(@f_equal bool bool f a b
(@eq_refl bool a)) in exact H end (v8.6)

@ match goal with |- ?G => set (y := G) end (v8.6)

@ lazymatch goal with |- ?f ?a = ?g ?b => let H := constr:(@f_equal bool bool f a b

(@eq_refl bool a)) in exact_no_check H end (v8.6)

@ lazymatch goal with |- ?f ?a = ?g ?b => let H := constr:(@f_equal bool bool fa b
(@eq_refl bool a)) in idtac end (v8.6)

® lazymatch goal with |- ?f ?a = ?g ?b => let H := constr:(@f_equal bool bool f a b)
in idtac end (v8.6)

® assert (z :=true); revert z (v8.6)

® lazymatch goal with |- ?f ?a = ?g ?b => idtac end (v8.6)
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Proof assistant performance (size)

 How large is slow?
 Around 150,000—500,000 words

Do terms actually get this large?



Proof assistant performance (size)

 How large is slow?
 Around 150,000—500,000 words

Do terms actually get this large?

YES!



Proof assistant performance (size)

* Adirected graph has:
* atype of vertices (points)
e for every ordered pair of vertices, a type of arrows

36



Proof assistant performance (size)

* A directed 2-graph has:
* atype of vertices (0-arrows)
» for every ordered pair of vertices, a type of arrows (1-arrows)

» for every ordered pair of 1-arrows between the same vertices, a
type of 2-arrows

37




Proof assistant performance (size)

* A directed arrow-graph comes from turning arrows into
vertices:

38




Proof assistant performance (pain)

* When are these slow?
 When your term is large

* Smallish example (29 000 words): Without Proofs:
{I| LCCMFf = _\_inducedfp (my; o my,);
LCCMT =A7r (A(c:dy /F)> my c.fomyqc.B) |}=
{| LCCMp := _\_inducedp my, o _\_inducedp my,;
LCCMT =A7 (A (c:d) [F) > my;c.fo(dy) lomyyc.fol) |}
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Proof assistant performance (pain)

* When are these slow?
 When your term is large

* Smallish example (29 000 words): Without Proofs:

{| LCCME = _\_inducedfg (my, e my,);
LCCMT =Ar (A (c: d) /F) > myc.fomyq c.[3)
(II—pfs; (A7 (A (¢ : C) > myy comy; C)
(o1 —pf My myq)) (M 0o My3)) |}=
{| LCCMg = _\_inducedp mq, o _\_inducedg m;y,;
LCCMT =A7 (A (c:dy JF)=>myc.fo(dy)ylomyqic.fol)
(v —pf  (Ar (A(c:dy /F)=>myc.f) (II—pf,
Ar (A (c:dy /F)=>(dy)1Temyyc.fol)
(1 —pf  (4r (A(c:dy [F)=>(d
(oo —pf (Ar (A (¢ : d, /40F) =

(TT—nfc. m. . m..




Proof assistant performance (pain)

* When are these slow?
 When your term is large

* Smallish example (29 000 words): Without Proofs:

{| LCCMF = _\_inducedfp (my; o my5);
LCCMT =47 (A(c:dy /F) = my c.fomy c.[)
(I=pfs; (A7 (A (c : C) > myq comy; C)
(o1 —pf my1 my1)) (Maz 0o My3)) |} =
{| LCCMF = _\_inducedp mq, o _\_inducedg m;,;
LCCMT =27 (A (c:d;y [ F) = myc.fo(d) lemyqc.fol)
(o1 —=pf (Ar (A (c : dy / F) = myy c. ) (II—pfdy myy my3)))
Ar (A(c:dy JF)=>(d)ylemyyc.Bol)
(1 —pf (A (A (c: dy /F) = (dy)y Tomyq c.p)
(co —pf (Ar (A(c:dy/F)=>myc.p)
(II=pf's; my; my3)) 1) 1)) [}
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Proof assistant performance (fixes)

* How do we work around this?



Proof assistant performance (fixes)

* How do we work around this?

* By hiding from the proof checker!

43
Fence from http://imgarcade.com/1/hiding-clipart/



Proof assistant performance (fixes)

* How do we work around this?
* By hiding from the proof checker!

e How do we hide?



Proof assistant performance (fixes)

* How do we work around this?
* By hiding from the proof checker!

 How do we hide?
* Good engineering

» Better proof assistants



Proof assistant performance (fixes)

Careful Engineering



Outline
* Why should we care about performance?
* Overview of the HoTT/HoTT library

* What makes theorem provers (mainly Coq) slow?

. ‘ o A
Examples of particular slowness N E> g"

* For users (workarounds)
e Arguments vs. fields and packed records
* Abstraction barriers ﬁ

»
@?a:.,{,l

Dam image from http://www.flickr.com/photos/gammaman/7803829282/ by Eli Christman, CC by 2.0
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Proof assistant performance (fixes)

* How?
* Avoid exponential blowup: Pack your records!



Proof assistant performance (fixes)

* How?
* Avoid exponential blowup: Pack your records!

A mapping of graphs is a mapping of vetices to vertices and
arrows to arrows

“ LIS

G‘/" ' %

O\

N\ =Y
@@@“ o
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Proof assistant performance (fixes)

* How?
* Avoid exponential blowup: Pack your records!

At least two options to define graph:
Record Graph:={V:Type; E:V >V - Type }.
Record IsGraph (V: Type) (E: V>V - Type) :={ }.

50



Proof assistant performance (fixes)

Record Graph:={V: Type; E:V >V - Type }.
Record IsGraph (V: Type) (E: V- V- Type) :=1{ }.
Big difference for size of functor:
Mapping : Graph = Graph — Type.
Vs.

[sMapping : V (V; : Type) (Vy : Type)

(Eg : Vg = Vg = Type) (Ey : Vy = Vi = Type),
’/ \’ﬁ\@g [sGraph V; E; = IsGraph Vy Ey — Type.

GOt
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Proof assistant performance (fixes)

e How?
e Either don’t nest constructions, or don't unfold nested
constructions

* Coq only cares about unnormalized term size — “What | don't
know can't hurt me”



Proof assistant performance (fixes)

* How?
* More systematically, have good abstraction barriers



Proof assistant performance (fixes)

* How?
* Have good abstraction barriers 0

Leaky abstraction barriers
generally only torture
programmers

54
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Proof assistant performance (fixes)

* How?
* Have good abstraction barriers 0

Leaky abstraction barriers
torture Coq, too!

55
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Proof assistant performance (fixes)

e How?
* Have good abstraction barriers

Example: Pairing (without judgmental n)

Two ways to make use of elements of a pair:
let (x,y) :=pin f x y. (pattern matching)
f (fstp) (snd p). (projections)



Proof assistant performance (fixes)

e How?
* Have good abstraction barriers

Example: Pairing (without judgmental n)

Two ways to make use of elements of a pair:

let (x,y) :=pin f x y. (pattern matching)

f (let(x,y):=pinx) (let (x, y) :=piny). (projections)

These ways do not unify!



Proof assistant performance (fixes

* How?
* Have good abstraction barriers

Leaky abstraction barriers
torture Coq, too!

Rooster Image from
http://www.animationlibrary.com/animation/18342/Chicken_blows_up/
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Proof assistant performance (fixes)

e How?
* Have good abstraction barriers 0

Leaky abstraction barriers
torture Coq, too!

60
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Proof assistant performance (fixes)
Concrete Example (Old Version)

Local Notation mor_of Y, ¥; f:=
(let ny,:= IsInitialMorphism_morphism (@HM Y;) in
(@center _ (IsInitialMorphism_property (@HM Yy) _ (1y, © £))) 1) (only parsing).
Lemma composition_of x yz g f: mor_of __(f e g) =mor_ofyz f o mor_ofx y g.
Proof.
simpl.
match goal with | [ - ((@center 7A?H) ,) 1= _] = erewrite (@contr A H (center _; (;;_))) end.
simpl; reflexivity.
Grab Existential Variables.
simpl in *.
repeat match goal with | [ - appcontext[(?x ;) 1 ] ] = generalize (x ,); intro end.
rewrite ?composition_of.
repeat try_associativity_quick (idtac; match goal with | [ - appcontext[?x ;] ] = simpl rewrite x , end).
rewrite ?left_identity, ?right_identity, ?associativity.
reﬂexngz. .na:\\\
Clgggish - Size of goal (after first-simpl):7312-words

U §t§ Size of proof term: 66 264 words
@ Total time in file: 39 s
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Proof assistant performance (fixes)
Concrete Example (New Version)

Local Notation mor_of Y, ¥; f:=
(let ny,:= IsInitialMorphism_morphism (@HM Y;) in
[sInitialMorphism_property_morphism (@HM Y;) _ (ny, © f)) (only parsing).
Lemma composition_of x yz g f: mor_of __(f e g) =mor_ofyz f o mor_ofx y g.
Proof.
simpl.
erewrite [sInitialMorphism_property_morphism_unique; [ reflexivity | ].
rewrite ?composition_of.
repeat try_associativity_quick rewrite IsInitialMorphism_property_morphism_property.
reflexivity.
Qed.

fa,\éreY Size of goal (after first simpl): 191 words (was 7312)
. O\“ Size of proof term: 3 632 words (was 66 264)
) Total time in file: 3 s (was 39 s)
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Proof assistant performance (fixes
Concrete Example (Old Interface)

Definition IsInitialMorphism_object (M : IsInitialMorphism A¢) : D := CommaCategory.b A¢.
Definition IsInitialMorphism_morphism (M : IsInitialMorphism A¢) : morphism C X (U  (IsInitialMorphism_object M)) := CommaCategory.f Ag.
Definition IsInitialMorphism_property (M : IsInitialMorphism Ag) (Y : D) (f : morphism C X (U o Y))
: Contr { m : morphism D (IsInitialMorphism_object M) Y | U y m o (IsInitialMorphism_morphism M) = f }.
Proof.
(** We could just [rewrite right_identity], but we want to preserve judgemental computation rules. *)
pose proof (@trunc_equiv’ __ (symmetry __ (@CommaCategory.issig_morphism ___!X U __)) -2 (M (CommaCategory.Build_object !X U ttY f))) as H'.
simpl in H'.
apply contr_inhabited_hprop.
- abstract (
apply @trunc_succ in H';
eapply @trunc_equiv’; [ | exact H' ];
match goal with
| [ + appcontext[?m o [] ] = simpl rewrite (right_identity ___m)
| [ + appcontext[l o 2m] | = simpl rewrite (left_identity ___m)
end;
simpl; unfold IsInitialMorphism_object, IsInitialMorphism_morphism;
let A := match goal with + Equiv ?4 ?B = constr:(4) end in
let B := match goal with + Equiv ?4 ?B = constr:(B) end in
apply (equiv_adjointify (Ax: A = x ) (A x: B = (tt; x)));
[ intro; reflexivity | intros [[]]; reflexivity ]
).
- (exists ((@center _H") 3) 1).
abstract (etransitivity; [ apply ((@center _H") ;) , | auto with morphism ]).
Defined.

Total file time: 7 s
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Proof assistant performance (fixes
Concrete Example (New Interface)

Definition IsInitialMorphism_object (M : IsInitialMorphism A¢) : D := CommaCategory.b A¢.
Definition IsInitialMorphism_morphism (M : IsInitialMorphism A¢) : morphism C X (U  (IsInitialMorphism_object M)) := CommaCategory.f Ag.
Definition IsInitialMorphism_property_morphism (M : IsInitialMorphism A¢) (Y : D) (f: morphism C X (U ¢ Y)) : morphism D (IsInitialMorphism_object M) Y
:= CommaCategory.h (@center _ (M (CommaCategory.Build_object X U ttY f))).
Definition IsInitialMorphism_property_morphism_property (M : IsInitialMorphism A¢) (Y : D) (f : morphism C X (U , Y))
: U 1 (IsInitialMorphism_property_morphism M Y f) o (IsInitialMorphism_morphism M) = f
:= CommacCategory.p (@center _ (M (CommaCategory.Build_object !X U ttY f))) @ right_identity ___ _.
Definition IsInitialMorphism_property_morphism_unique (M : IsInitialMorphism A¢) (Y : D) (f: morphism C X (U o Y)) m' (H : U ; m’ o IsInitialMorphism_morphism M = f)
: IsInitialMorphism_property_morphism MY f =m'
:=ap (@CommacCategory.h _______ )
(@contr _ (M (CommaCategory.Build_object !X U tt Y £)) (CommaCategory.Build_morphism A¢ (CommaCategory.Build_object !X U ttY f) ttm’ (H @ (right_identity ____) ~1))).
Definition IsInitialMorphism_property (M : IsInitialMorphism A¢) (Y : D) (f: morphism C X (U 4 Y))
: Contr { m : morphism D (IsInitialMorphism_object M) Y | U ; m o (IsInitialMorphism_morphism M) = f }.
:={| center := (IsInitialMorphism_property_morphism M Y f; IsInitialMorphism_property_morphism_property M Y f);
contr m’ ;= path_sigma _ (IsInitialMorphism_property_morphism M Y f; IsInitialMorphism_property_morphism_property M Y f)
m' (@ IsInitialMorphism_property_morphism_unique M Y f m' ; m' ;) (center ) |}.

Total file time: 7 s
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Proof assistant performance (fixes)
Concrete Example 2 (Generalization)

Lemma pseudofunctor_to_cat_assoc_helper {x xy : C} {x, : morphism C x x0} {x1 : C}
{x5 : morphism C xq x1} {x4 : C} {x7 : morphism C x; x4}
{p po : PreCategory} {f : morphism C x x4, = Functor p, p}
{p1 p, : PreCategory} {f, : Functor p, p} {f; : Functor p; p,} {f, : Functor p, p,} {f5 : Functor p, p,} {f4 : Functor p; p}
{x16 : morphism (_ = ) (f (x7 © x5 © x3)) (fa  f3)%functor}
{x15 : morphism (_—_) f> (f1 ° f3)%functor} {H,: IsIlsomorphism x5}
{x11 s morphism (L= ) (f (x7 © (x5 © x2))) (fo © f2)%functor}
{Hy: IsIsomorphism xq1} {Xg : morphism (_—_) fa (fo © f1)%functor} {fst_hyp: x; o x5 0 x, =x; o (x5 0 x;)}
(rew_hyp : V x5 : po,
(idtoiso (po = p) (ap f fst_hyp) : morphism__ ) x5 =x17 ~t x50 (fo 1 (15 ~* x3) © (Lo (%9 (f3 x3) © X16 X3))))
{H} : Islsomorphism x;¢} {H; : Islsomorphism xg} {x13 : p} {3 : po} {X6 : P1} {X10 : P2}
{x14 : morphism p (f X10) x13} {x12 : morphism p, (f; Xs) X10} {Xg : morphism p; (f3 x3) x¢}
: existT (4 f5 : morphism C x x, = morphism p ((f f5) x3) X13)
(x7 © X5 © x7)
(12 © (fo 1 X12 © X9 X6) © (fa 1 X5 © X16 X3)) = (7 © (X5 ° X2); X14 © (fo 1 (X12 © (f1 1 Xg © X315 X3)) © X171 X3)).
Proof.
helper_t assoc_before_commutes_tac.
assoc_fin_tac.
Qed.

Speedup: 10x for the file, from 4m 53s to 28 s
Time spent: a few hours
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Outline
* Why should we care about performance?
* Overview of the HoTT/HoTT library

* What makes theorem provers (mainly Coq) slow?

. ‘ o A
Examples of particular slowness N E> g"

* For users (workarounds)
e Arguments vs. fields and packed records
* Abstraction barriers ﬁ

»
@?a:.,{,l

Dam image from http://www.flickr.com/photos/gammaman/7803829282/ by Eli Christman, CC by 2.0
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Outline

* Why should we care about performance?
* Overview of the HoTT/HoTT library

* What makes theorem provers (mainly Coq) slow?

. ‘ o A
Examples of particular slowness N E> g"

* For users (workarounds)
* Arguments vs. fields and packed records
e Abstraction barriers ﬁ

* For developers (features)
* Primitive projections

Dam image from http://www.flickr.com/photos/gammaman/7803829282/ by Eli Christman, CC by 2.0
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* How?
* Primitive projections



Proof assistant performance (fixes)

e How?

* Primitive projections

Definition 2-Graph :=

.‘ .
< o
{V : Type & %. %'

{1IE V-V ->Type&
VY vy v,, 1IEv; v, - 1E vy v, = Type }.
Definition V. (G : 2-Graph) := pri G .
Definition 1E (G : 2-Graph) := pry (pr, G).
Definition 2E (G : 2-Graph) := pr, (pr, G).
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Proof assistant performance (fixes)

Definition 2-Graph :=
{V. :Type&
{1E :V—)V—>Type&

VY vy v,, 1IEv; v, - 1E vy v, = Type }.
Definition V. (G : 2-Graph) := pri G .
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Proof assistant performance (fixes)

Definition 2-Graph :=
{V. :Type&
{1E :V—)V—>Type&

V vy vy, 1IE vy v, » 1E vy v, - Type }.
Definition V. (G : 2-Graph) :=
@pr; Type (A V: Type =
{1E : V>V > Type &
VY vy v,, 1IEvy v, > 1E vy v, > Type })

G. .



Proof assistant performance (fixes)

Definition 2-Graph :=
{V. :Type&
{1E :V—)V—>Type&

VY vy v,, 1IEv; v, - 1E vy v, = Type }.
Definition V. (G : 2-Graph) := pri G .
Definition 1E (G : 2-Graph) := pry (pr, G).
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Proof assistant performance (fixes)

Definition 1E (G : 2-Graph) :=
@pr,
(@pr; Type (AV:Type=
{1E V>V ->Type &
Y vy vy, 1IEvy v, > 1Ev; v, > Type })
G-
@pr,; Type (A V: Type =
{1E V>V ->Type &
Y vy v,, 1IEv; v, > 1Ev; v, > Type })
G-
Type)
(1 1E: @pr, Type (A V: Type =

{ 1EV—>V—>Type& 74



Proof assistant performance (fixes)

Definition 1E (G : 2-Graph) :=
@pr,
(@pr; Type (A V:Type =
{1E: V>V ->Type &
Y vy vy, 1IE vy v, = 1E vq v, = Type })
G-
@pr, Type (A V: Type =
{1E: V>V > Type &
Y vy vy, 1IE vy v, = 1E vg v, = Type })
G-
Type)
(A 1E: @pr; Type (A V: Type =
{1E: V>V ->Type &
Y v vy, 1IEv; v = 1E vq v, = Type })
G-
@pr; Type (A V:Type =
{1E: V>V ->Type&
Y v vy, 1IEv; v = 1E vq v, = Type })
G-
Type =
Y vy vy, 1E v, v, = 1E v v, = Type)
(@pr, Type (A V:Type =
{1E :V->V->Type&
Y vy vy, 1E vy v, = 1Ev; v, - Type }
G)
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Proof assistant performance (fixes)

Definition 1E (G : 2-Graph) :=
@pr,
(@pr,; Type (AV:Type=>{1E: V>V ->Type &V (v;:V) (v5:V),1Ev; v, - 1Ev; v, > Type }) G-
@pr, Type (AV:Type=>{1E: V>V > Type &V (v;:V) (v,:V),1Ev, v, > 1Ev; v, = Type }) G-
Type)
(A1E: @pr, Type (AV:Type=>{1E: V>V ->Type &Y (v,:V) (v,:V),1Ev; v, > 1Ev; v, » Type }) G-
@pr; Type AV :Type=>{1E: V>V > Type &Y (v, :V) (v,:V), 1Ev; v, > 1Ev; v, > Type }) G-
Type =
V(vq: @pr; Type (AV:Type=>{1E: V>V ->Type&V (v;:V) (v,:V),1Ev; vy, - 1Ev; v, = Type }) G)
(vy: @pry Type (AV:Type=>{1E: V>V ->Type &Y (v;:V) (v,:V), 1Ev; v, - 1E vy v, = Type }) G),
1E v, v, = 1E v; v, = Type)
(@pr, Type (AV:Type=>{1E: V>V ->Type &Y (v,:V) (v,:V), 1Ev; v, > 1Ev; v, = Type }) G)
:@pr; Type (AV:Type=>{1E: V>V ->Type& VY (v;:V) (v,:V),1Ev; vy, - 1Ev; v, > Type}) G-
@pr; Type AV :Type=>{1E: V>V > Type &Y (v, :V) (v,:V), 1Ev; v, > 1Ev, v, > Type }) G-
Type

Recall: Original was:
Definition 1E (G : 2-Graph) := pry (pr, G).
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Proof assistant performance (fixes)

* How?
* Primitive projections

* They eliminate the unnecessary arguments to projections,
cutting down the work Coq has to do.



Take-away messages

* Performance matters
(even in proof assistants)

*Term size matters for performance

2 B

* Performance can be improved by
 careful engineering of developments
*improving the proof assistant

or the metatheory N\




Thank You!

The presentation will be available at

http://people.csail.mit.edu/jgross/#hott-hott-and-category-coq-
experience

An extended version is available at
http://people.csail.mit.edu/jgross/#category-cog-experience

The library is available at
https://github.com/HoTT/HoTT

Questions?
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