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Takeaways

* Opportunity: Automate Verification to Enable Innovation
* Big Problem: Asymptotic Performance
* My Contribution: Reflective Partial Evaluation

* Important Next Steps



Fiat Crypto

* Joint work with Andres Erbsen, Jade Philipoom, Adam Chlipala, et al
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Innovation with Cryptogra

“Better! Faster! Mathematical
Cheaper!”

Specification:
(a-b) modp

* Hedging against
more powerful
attackers AR S o

limb re,ri,r2,r3,r4,s0,s1,s2,s3,s4,c;

re = in[0];
rl = in[1];
r2 = in[2];
r3 = in[3];
* More
s@ = in2[0];
sl = in2[1];

s2 = in2[2];

(]
s3 = in2[3];
mathematical
t[e] ((uint128_t) re) s0;

t[1] ; ((uint128_t) re) s1 + ((uint128_t) ri1) 50;
t[2] = ((uint128_t) re) s2 + ((uint128_t) r2) s0 + ((uint128_t) r1l) * si;

R
* ok ® *

((uint128_t) re) s3 + ((uint128_t) r3) s + ((uint128_t) rl) * s2 + ((uint128_t) r2) * si;

.
t[3]

Se C' l rlty t[4] ((uint128_t) re) s4 + ((uint128_t) r4) s@ + ((uint128_t) r3) * s1 + ((uint128_t) rl) * s3 + ((uint128_t) r2) * s2;
r4 *= 19;

rl *= 19;

r2 *= 19;

r3 *= 19;

t[0] += ((uint128_t) r4) * s1 + ((uint128_t) rl) * s4 + ((uint128_t) r2) * s3 + ((uint128_t) r3) * s2;
. Re d u Ce COStS t[1] += ((uint128_t) r4) * s2 + ((uintl28 t) r2) * s4 + ((uint128_t) r3) * s3;

t[2] += ((uint128_t) r4) * s3 + ((uintl28_t) r3) * s4;

t[3] += ((uint128_t) r4) * s4;

r0 = (limb)t[0] & OX7TFFFFFFFFFFFF; c = (limb)(t[0] >> 51);

t[1] += ¢; rl = (limb)t[1] & OX7FFFFFFFFFFFF; c = (Limb)(t[1] >> 51);

t[2] += ¢; r2 = (limb)t[2] & Ox7FFFFFFFFFFFF; ¢ = (Limb)(t[2] >> 51);
Se rve r u Se r t[3] += ¢; r3 = (limb)t[3] & Ox7FFFFFFFFFFFF; ¢ = (Limb)(t[3] >> 51);
t[a] += = (1imb)t[4] & Ox7FFFFFFFFFFFF; ¢ = (Limb)(t[4] >> 51);

c; rd
re += ¢ * 19; ¢ = r@ >> 51; r@ = r@ & Ox7ffffffffffff;
rl += ¢; ¢ = rl > 51; rl = rl & Ox7fFFHffffffff;

r2 += c;

output[@] = ro;
output[1] = ri;
output[2] = r2;
output[3] = r3;
output[4] = r4;

}

“Don’t touch it;
it works!”

e Lots of room for
error

* Enormous cost
of error

e Hard to find
errors



The Promise of Verification

Mathematical

Specification:
(a-b) modp

PrOOf that static inline void force_inline
fmul(felem output, const felem in2, const felem in) {
code matches i L

1limb re,ri,r2,r3,r4,s0,s1,s2,s3,s4,c;
re = in[0];
rl = in[1];

Spec r2 = in[2];
r3 = in[3];
r4 = in[4];
s0 = in2[0];
s1 = in2[1];
s2 = in2[2];
s3 = in2[3];
s4 = in2[4];

t[0] = ((uint128_t) re@) * se;

t[1] = ((uint128_t) r@) * sl + ((uint128_t) r1) * s@;

t[2] = ((uint128_t) r@) * s2 + ((uint128_t) r2) * s@ + ((uint128_t) r1) * si;

t[3] = ((uint128_t) r@) * s3 + ((uint128_t) r3) * s@ + ((uint128_t) rl) * s2 + ((uint128_t) r2) * si;
- * *

t[4] = ((uint128_t) re)
r4 *= 19;

rl *= 19;

r2 *= 19;

r3 *= 19;

t[0] += ((uint128_t) r4) * sl + ((uint128_t) rl) * s4 + ((uint128_t) r2) * s3 + ((uint128_t) r3) * s2;
t[1] += ((uint128_t) r4) * s2 + ((uint128_t) r2) * s4 + ((uint128_t) r3) * s3;

t[2] += ((uint128_t) r4) * s3 + ((uint128_t) r3) * s4;

t[3] += ((uint128_t) r4) * s4;

ro = (limb)t[0] & OX7TFFFFFFFFFFFF; c = (limb)(t[0] >> 51);

t[1] += ¢; rl = (limb)t[1] & Ox7TFFFFFFFFFFFF; c = (Limb)(t[1] >> 51);

t[2] += ¢; r2 = (limb)t[2] & OX7TFFFFFFFFFFFF; ¢ = (Limb)(t[2] >> 51);

s4 + ((uint128_t) r4) s@ + ((uint128_t) r3) * s1 + ((uint128_t) rl) * s3 + ((uint128_t) r2) * s2;

t[3] += ¢; r3 = (limb)t[3] & Ox7FFFFFFFFFFFF; c = (Limb)(t[3] >> 51);
t[4] += ¢; rd4 = (limb)t[4] & Ox7FFFFFFFFFFFF; ¢ = (limb)(t[4] >> 51);
r@ += c * 19; ¢ = r@ >> 51; ro = re & Ox7ffffffffffff;

Pl 4= c; € = rl >> 51; rl = rl & Ox7FFFFFFFFFFFF;

r2 += c;

output[@] = ro;
output[1] = ri;
output[2] = r2;
output[3] = r3;

output[4]
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The Overhead of Verification

e 10x—100x overhead

CompCert 5880 36,120
sel4 8700 1,092,121

CertiKOS 6500 96,642
Fiat Cryptography [:iE 94,196

Lines of Code Lines of Verification
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Automating Verification

Mathematical Specifications (a-b) modp (a-b) mod q (a-b) modr
é l

Generated Code + Proof
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Our script is run and checked by...

* Dependently typed, interactive, tactic-driven proof assistants
* Dependently typed proof assistants are expressive
* Interactivity allows easy insertion of human ingenuity

* Tactics allow automation

Coq logo from https://calebstanford.com/2019/01/15/coqg-vector-image/



The Big Problem in Automating Verification

* Asymptotic performance

* We can automate verification of toy examples in the proof engine
* BUT this automation takes way too long on real examples

* My work has been fixing this performance problem
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The Potential of Automating Verification

Fiat Cryptography:

94,196

188,365

Original Lines of Code Lines of Verification Lines of Generated Code

November 30, 2020
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't’s really easy to use!

B D\cygwin\ushlocal\bin\mosh-jgross-transparent-rooster.sh

$ src/Extraction0Caml/unsaturated solinas curve25519 64 5 2°255-19 |




't’s really easy to use!

ol [ cygwiniusrlocal\bin\mosh-jgross-transparent-rooster.sh

% src/Extraction0OCaml/unsaturated solinas curve25519 64 5 2°255-19 |




Requirements

1. Code we generate must be fast and constant time

Justification: server load, security

2. Easy to add and prove new algorithm, prime, architecture, ...

Justification: scalability of human effort, edit-compile-debug loops

3. Verification should not run forever

Justification: usability



Where was the asymptotic performance issue?



Fiat Cryptography Pieces

Associational Montgomery

Bounds
Freeze .
Analysis

Base Partial
Conversion Evaluation
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Dourds Ardlysis

Verification Time: 1 limb

Columns Montgomery
Base
Conversion
Positional Rows Barrett
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Associational

Partial Evaluation



Verification Ti

Bounds Analysis

Associational Columns

Freeze

Associational Columns Montgomery

onversion

Positional ROWS Ba rrett

] V.JILIO

Partial Evaluation
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Partial Evaluation

Dourds Ardlysis




Verification Time: 2 limbs

Bounds Analysis

sssss iational
Rows B Barrett

Partial Evaluation
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Verification Time: 3 limbs

Bounds Partial Evaluation

Analysis
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What is Partial Evaluation?

(@ ) (@

Fetch o from

N
N
3

Partial

Evaluation Fetch ' frOm

d —

N
Fetch 3

/ @ /

Peanut Butter modified from image by P Thanga Vignesh from the Noun Project CC BY 3.0; Jam modified from image by Nikita Kozin from the Noun Project CC BY
3.0; Bread modified from image by Joanna Giansanti from the Noun Project CC BY 3.0; Sandwich bag by Kate Maldjian from the Noun Project; Shelves by Lluisa
Iborra from the Noun Project; Refrigerator by shashank singh from the Noun Project



What is Partial Evaluation?

Partial

xX+2+y—x+6

Evaluation




Partial Evaluation in Fiat Cryptography

64-bit square

static void fiat_25519_uint128 x27; X5 = (x4 * 0x2); x7); UINT64_C(OXTFFFFFEFFFFFF));
fiat_25519_carry_square(uint64_tfiat_25519_uint128 x28; x6 = ((argl[3]) * ox2); x18 = x34 = (x32 + x29);
out1[5], const uint6d_t argl[5])fiat_25519_uint128 x29; x7 = ((argi[2]) * ox2); ((fiat_25519_uint128)(argl[1]) *x35 = (uint6d_t)(x34 >> 51);
{ fiat_25519_uint128 x30; x8 = ((argi[1]) * ox2); (argl[1])); x36 = (uint64_t)(x34 &
uint6d_t x1; fiat_25519_uint128 x31; x9 = x19 UINT64_C(OXTFFFFFEFFFFFF));
uinted_t x2; uint6d_t x32; ((fiat_25519_uint128)(argl[4]) * ((fiat_25519_uint128)(argl[6]) *x37 = (x35 + x28);
uint64_t x3; uint64_t x33; x1); x3); x38 = (uint64_t)(x37 >> 51);
. uinted_t x4; fiat_25519_uint128 x34; x10 = x20 x39 = (uint64_t)(x37 &
uint64_t x5; uint64_t x35; fiat_25519_uint128)(argl[3 * ((fiat_25519_uint128)(argl[e *UINT64_C(ox7FFFfffffffff));
. = _ 2 = _ [
uint64_t x6; uint64_t x36; x2); x6); x40 = (x38 + x27);
. . . . * . * uint64_t x7; fiat_25519_uint128 x37; x11 = x21 x41 = (uint64_t)(x4@ >> 51);
De-Fl n 1‘t 10n mu 1 ( p q . 1 1 st (Z Z ) ) . 1 1 St ( Z Z) ] uint64_t x8; uint64_t x38; ((fiat_25519_uint128)(argl[3]) * ((fiat_25519_uint128)(argl[e]) *x42 = (uint64_t)(x4@ &
* M M fiat_25519_uint128 x9; uinted_t x39; x4); X7); UINTG4_C(OXTFFFFFFFFFFFF));
1 fiat_25519_uint128 x10; fiat_25519_uint128 x40; x12 = x22 x43 = (x41 * UINT8_C(@x13));
'Fl a‘t ma p ( -F u n (W ‘t ) = > fiat_25519_uint128 x11; uint64_t x41; ((fiat_25519_uint128)(argl[2]) * ((fiat_25519_uint128)(argl[0]) *x44 = (x26 + x43);
— J fiat_25519_uint128 x12; uinted_t x42; x2); X8); X45 = (x44 >> 51);
1 1 1 fiat_25519_uint128 x13; uint64_t x43; x13 = x23 X46 = (x44 &
ma p ( -F u n ( W t ) - > fiat_25519_uint128 x14; uint64_t x44; ((fiat_25519_uint128)(argl[2]) * ((fiat_25519_uint128)(argl[@]) *UINT64_C(Ox7ffffffffffff));
) fiat_25519_uint128 x15; uinté4_t x45; X5); (argi[e])); X47 = (x45 + x33);
' Ky fiat_25519_uint128 x16; uint64_t x46; x14 = Xx24 = (x23 + (x15 + x13)); x48 = (fiat_25519_uintl)(x47 >>
(W * W t * 't ) ) fiat_25519_uint128 x17; uint64_t x47; ((fiat_25519_uint128)(argl[2]) *x25 = (uint64_t)(x24 >> 51); 51);
3 fiat_25519_uint128 x18; fiat_25519_uintl x48; (argl[2])); x26 = (uint64_t)(x24 & x49 = (x47 &
fiat_25519_uint128 x19; uint6d_t x49; x15 = UINT64_C(OX7FFFFFFFFFFFF)); UINTG4_C(OXTFFFFFFFFFFFF));
q ) p fiat_25519_uint128 x20; uint64_t x50; ((fiat_25519_uint128)(argl[1]) *x27 = (x19 + (x16 + x14)); x50 = (x48 + x36);
* fiat_25519_uint128 x21; x1 = ((argl[4]) * x2); x28 = (x20 + (x17 + x9)); outl[e] = x46;
. . . . fiat_25519_uint128 x22; UINT8_C(8x13)); x16 = x29 = (x21 + (x18 + x18)); outl[1] = x49;
FlXpolnt squar\e ( p . llst ( Z*Z) ) . 1lst (Z*Z) fiat_25519_uint128 x23; (x1 * ox2); ((fiat_25519_uint128)(argl[1]) *x3@ = (x22 + (x12 + x11)); out1[2] = x56;
* M fiat_25519_uint128 x24; ((argl[4]) * ox2); X6); X31 = (x25 + x30); out1[3] = x39;
. uint64_t x25; x4 = ((argl[3]) * x17 = x32 = (uint64_t)(x31 >> 51); outl[4] = x42;
: - mat C h p Wlt h uint64_t x26; UINT8_C(@x13)); ((fiat_25519_uint128)(argl[1]) *x33 = (uint64_t)(x31 & }
| [1=>1] 32-bit sq
..
J outi[10], const uint3z2_t argi[10]) { uintest xs4; t x108; ((arg1[3]) * ((uintss_t)x8 * 0x2);  xB9 = (xB7 + xB4);
. uint32_t uintea’t x55; t x109; nt6_t) (argl[3]) * x12); X908 = (x89 >> 26);
_ . * Vineaa e, o) (orgala]) + (48 * 02)); 91 - (uinta_tr(x89 & UTNTI2 CCex
=> e WO o= in uints2t ¢ x7; ¢ an; (arg1[3]) * x15); 92 - (x90 + x83);
—_ uints2 e £ x58; ©aiz; (uintsa_6) argl[3]) * ((argl(3]) * x93 = (
uintes t t 9 ©ais; x04 = (
* * uint32 e t x60; t xaia; ((uintss_t) arg1[2]) * x2); -
W W uint32_t t x61; t xi1s; ((arg1[2]) * x5)
J uint32 t t 62} ¢ x116; 21) * x90); X97 = (uint32_t)(x95 & UINT32_C(ox
1 1 1 * 1 * 1 uint32_t t x63; 2t x117; 2]) * x12); X98 = (x96 + x81);
o o uint32t t x64; fiat_25519_uint1 x118; 2]) * x18); x99 = (x98 >> 25);
1 map ()\ (w t ) (w W two t t ) ) ts ) = B e s
4 ) ) -_ uint32 t t 66 32t x126; 2]) * x16); UINT32_C(8x1FFFFFF));
uint32_t t x67; (arg1[9]) * UINTS_C(8x13)); ((uint64. rglf2]) * (argl[2])); X101 = (x99 + x80);
uint32 ¢ t x68; X1+ ox2); ((arg1[1]) * ((uinted t)x2 * 0x2));  x162 = (x161 >> 26);
++ square ts et i B e iz e
uint32 e t x70; (arg1[8]) * UINTE_C(ax13)); argl[1]) ¢ (@ * 0x2));  UINTI2_C(X3FFFFFN);
uint32 ¢ tx71; (uintsa_t)xa * 0x2); argl[1]) * x12); X104 = (x102 + x79);
uint32 t t x72; (arg1[8]) 5 argl[1]) * (x14 * 0x2)); X105 = (x184 >> 25);
e n . uintea_t t x73; (arg1[7]) * UINTS_C(8x13)); argl[1]) * x15); X166 = (uint32 t)(x104 &
uint6a_t t x74; X7 * ox2); argl[1]) * (x16 * @x2)); UINT32_C(ex1ffffff));
N N . . . * . * * . * uintes_t + x7s; (arga[7]) * 0x2); arg1[1]) * x17); X187 = (105 + x78);
. . o uintes_t t 78] ((argl[5]) * UINTE C(ex13)); argl[1]) * ((argl[1]) *  x108 = (x107 >> 26);
Definition split (s:Z) (p:list(Z*Z)):1list (Z*Z) * list (Z*Z)
uint6a_t t x78; ((argl[6]) * ex2) argl[e]) * x3); UINT32_C(@x3fFFFFF));
' . . . ' . uintes_t tx79] ((argl[5]) * UINTE C(ex13)); argife]) * x6); X110 = (x108 + x77);
.« — .- — — — uintes_t + x80; ((arga[s]) * ex2) argife]) * x9); X1 = (16 5> 25);
:= let '"(hi, lo) := partition (fun '"(w, _) => wmod s =? @) p in
— uint6a_t t x82; ((argl[3]) * ex2); argl[e]) * x14); UINT32_C(@x1fFFFff));
' . uintea_t t x83; ((arg1[2]) * ex2); arg1[e]) * x15); X113 = (x111 * UINTE C(8x13));
—_ uintes_t t x64; ((arga[1]) * ox2); argife]) * x16); X114 = (x76 + x113);
(lo, map (fun "(w, t) => (w / s, t)) hi). S A et o) P ek
uintea_t t x86; ((uintsa_t)(argl[8]) * x2); argi[e]) * x18); X116 = (uint3:
. . . . * . * . * uintss_t t x87; ((uintsd_t) (arglls]) * xa); x73 = ((uinted_t) (argl[e]) * (argl[e]));  UINT32 C(ex3f
. . . . uintea_t + x8; ((arga[7]) * ((uintss £)x2 * @x2));  x74 = (x73 + (55 + (xd8 + (xa2 + (37 + X117 = (x115 + x88);
Definition reduce (s:Z) (c:list (Z*Z)) (p:list (Z*Z)):1list (Z*Z)
uint6a_t t x99; ((uintea_t)(argl[7]) * (x7 * @x2)); X7 (x74 >> 26); X119 = (x117 & UINT32_C(@
' o . . . uintes_t ey (uintsa_t) (arg1l6]) * x2); X76 = (uint32_t)(x74 & UINT32_C(OX3FFFFFF)); x120 = (x118 + x91);
.- — .- — uintea_t + x02; ((argale]) * x5); (X646 + (x56 + (x49 + (xa3 + x38))));  outl[0] = X116
:= let '"(lo, hi) := split s p in lo ++ mul c hi. LD S+ s o G ey oo oo
uint6a_t t x94; ((uint6a_t)(argl[6]) * x10); x120;
uint6a_t t x95; ((argl[5]) * ((uintsa_t)x2 * @x2)); 66 + (58 + (x51 + (x45 + x20)))); x94;
uint6a_t t x96; ((argl[5]) * x5); X8 67 + (x59 + (x52 + (x46 + (x22 + x97;
uint6a_t t x97; ((argl[5]) * ((uint6a_t)x8 * @x2)); x21))))); out1[s] = x1ee;
uint6a_t t x98; ((argl[5]) * x11); X8 68 + (x60 + (x53 + (x25 + x23)))); outl[6] = x103;
uintes_t t x99] ((uintsa ) argl[5]) * (I3 * 0x2)); xB2 = (x69 + (x61 + (X34 + (x29 + (x26 +  outl[7] = x106;
uintes_t t x100; (uintsa o) (arg1la]) * x2); x24)))); outi[£] = x109;
uint64_t t x101; ((argl[a]) * x5); X8: (x70 + (x62 + (x34 + (x30 + x27)))); outl[9] = x112;
uintes_t + x102; ((uintsa_t) (argl[4]) * x8); X84 = (x71+ (x63 + (xa0 + (35 + (31 +  }
uintes_t + x103; ((arg1[4]) * x11); x28)));
uintes_t + x104; ((uintsa_t) (argl[4]) * x14); XBS = (x72 + (47 + (x61 + (36 + x32))));
uints: x105; uintsa_t) (argl4]) * (argl[41)); X75 + x85);
64t + x105 ((uintsa o) (arg14]) * (argl(4])) 75 + x85)
uintes_t + x1e6; «

; 5 : (argl[3]) * ((uintea_t)x2 * 0x2)); (x86 >> 25);
November 30, 2020 22



Partial Evaluation is slow
60

50

40

)

Q

: 30

=20
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0 100 200 300
# binders (also = # rewrites)
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® rewrite_strat topdown
® rewrite_strat bottomup

repeat setoid rewrite

# binders for:

Curve25519: 90 (x64)or 188 (x32)
P-256: 150 (x64) or 400 (x32)
P-384: 300 (x64) or 916 (x32)
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What is a proof engine?

e Declare a goal to prove

* Issue instructions to make partial progress on proving
e Can write scripts to automate issuing of instructions

* Tracks the progress and current state

e Can issue a trail (proof certificate) to be checked by a small checker
(“kernel”)



Our Approach

* Dig deep to find the places of asymptotic blowup
e Understand the precise source of the blowup
* Fuse the different compiler passes deeply



Requirements for Partial Evaluation

* B-reduction
e 16-reduction + rewrites

e code sharing preservation



B-reduction

e Useful for eliminating function call overhead in the generated code,
which is important for output code performance

 Example: (A Xx.x+5)2) w2 +5



O-reduction + rewrites

e Useful for precomputation and eliminating function call overhead

* Arithmetic simplification necessary for getting right asymptotics of
generated lines of code in fiat-crypto (quadratic vs. quartic)

* Example:
map (Ax.x+5)[0;1;z] » [(Ax.x+5)0; (Ax.x+5)1; (Ax.x+5) z]

* Note that this leaves B redexes
e Without B-reduction, this can blow up code size

* Fusing rewriting with B-reduction in a way that scales



Code Sharing Preservation

* Necessary for avoiding exponential blowup in generated code size

* Example:
mapf(lety:=x+xinletz:=y+vyin|[z; z; z])
w lety:=x+xinletz:=y+yinmapf|[z z; Z]
w lety:=x+xinletz:=y+vyin|[fz;fz fz]

* Fusing this with B- and - reduction

November 30, 2020
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Compiler passes

* B-reduction
* eliminating function call overhead

 10-reduction + rewrites
* inlining definitions to eliminate function call overhead
 arithmetic simplification

e code sharing preservation
* to avoid exponential blowup in code size



Extra Requirements

* Verified
* Without extending the TCB

* Performant
* Should not introduce extra super-linear factors



The compiler passes need to be fused

* Needed to achieve adequate asymptotic performance!
e Separating out rewriting results in quartic rather than quadratic loc

e Separating out t-reduction (constant propagation) results in enormous
code-size blowup

e Separating out code-sharing-preservation results in enormous code-
size blowup



Implementation

* Reflective for performant and verified

 Normalization by Evaluation (NbE) (for B)
+ let-lifting monad (code-sharing)

+ rewriting (L0+rewrite)



Proof by Reflection

* Most steps in the proof engine make partial progress towards a goal
and leave behind a trail

* Coqg’s proof engine has a highly optimized primitive step for validating
the output of a computation

* Phrasing the goal so that we can just validate the output of a
computation

* Verifying the process, rather than having an ad-hoc process that leaves
behind a trail verifying the output



Non-Reflection Example

Inductive is_even:N-»P := |zero_even

is_even @ |[two_plus_even n : is_even n » is_even (2+n).

Goal is_even 9002. Goal is:
is _even 9002

1> - Current Proof is:
—=|repeat constructor
=4 two_plus _even 9000

(two_plus _even 8998
(two_plus_even 8996
(two_plus_even 8994 ..

Qed

v
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Reflection Example: Up-Front Work

Inductive is_even:N-»P := |zero even : is even @ |two plus even n : is even n - is_even (2+n).

Inductive parity := even | odd.

Definition flip_parity p
:= match p with even => odd | odd => even end.

Fixpoint parity_of (n : nat) : parity :=
match n with

| 0 => even
| S n' => flip parity (parity of n') end.

Lemma parity_of correct
: V n, parity of n = even » is_even n.

Proof.
intro n; asser

N 8N AR
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Reflection Example

Inductive is_even:N-»P := |zero even : is even @ |two plus even n : is even n - is_even (2+n).
Inductive parity := even | odd. Lemma parity_of correct
Fixpoint parity of : N - parity : V n, parity of n = even » is_even n.

Goal is:
is _even 9002

apply parity of correct Codlis
- = parity of 9002 = even

vm_compute; reflexivity. Current Proof is:

parity of correct 9002
(eq_refl even)

v

Thinking modified from image by ArmOkay from the Noun Project CC BY 3.0
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Goal is_even 9002.

Qed



Why reflective rewriting?

* Reflective rewriting is asymptotically faster

* The trail left by proof-engine-based rewriting is super-linear in the
size of the code being transformed

* Tracking the goal incurs super-linear overhead in the number of
binders

e Recursively computing only the output is asymptotically faster

 Side benefit: we can extract it to OCaml to run as a nifty command-
line utility



Normalization by Evaluation

Goal: Reuse substitution in Gallina for substitution in ASTs

Example: Turn “(Azpnx.z+ (x+(p +n))) 01 (-1)” into
(Azp nx. (Aab. rewrite(“+”, a, b))
z ((A a b. rewrite(“+”, a, b))
X ((A a b. rewrite(“+”, a, b))
p n)))) (rewrite(“0”)) (rewrite(“1”)) (rewrite(“-1"))

Expression application w» Gallina application

Expression abstraction - Gallina abstraction
Expression constants w» rewriter invocations on n-expanded forms



Normalization by Evaluation

Goal: Reuse substitution in Gallina for substitution in ASTs

Example: Turn “(Azpnx.z+ (x+(p +n))) 01 (-1)” into
(Azp nx. (Aab. rewrite(“+”, a, b))
z ((A a b. rewrite(“+”, a, b))
X ((A a b. rewrite(“+”, a, b))
p n)))) (rewrite(“0”)) (rewrite(“1”)) (rewrite(“-1"))

Then reduce!



Normalization by Evaluation

Goal: Reuse substitution in Gallina for substitution in ASTs

Example: Turn “(Azpnx.z+ (x+(p +n))) 01 (-1)” into
(Azp nx. (Aab. rewrite(“+”, a, b))
z ((A a b. rewrite(“+”, a, b))
X ((A a b. rewrite(“+”, a, b))
p n)))) (rewrite(“0”)) (rewrite(“1”)) (rewrite(“-1"))

Then reduce!

> (A x. rewrite(“+”, “0”, rewrite(“+”, “x”, rewrite(“+”, “1”, “-1”))))



Let-Lifting

* Let-Lifting monad for code-sharing-preservation

* Assignment + return; bind is derived

* Rewrote NbE in this Let-Lifting monad

* Haven’t seen it in the literature, but it’s not too tricky

e Automatic L-reduction was too tricky to figure out, so | hard-coded
the cases we needed for fiat-crypto



Rewriting

* For wo+rewrite

e Using Parametric Higher-Order Abstract Syntax (PHOAS) to deal with
binders allows delaying rewriting

* We thus achieve complete rewriting in a single pass when the rewrite

rules form a DAG
* We have extra magic for when they don’t. The magic is called “fuel” and “try
again”.



More Features

* Select rewrite rule based on Coq’s pattern matching so we don’t need
to walk the entire list of rewrite rules at every identifier/constant
node just to see which ones apply

* On-the-fly emission of a type of codes for relevant constants

 Partial evaluation on the generated rewriter (further 2x efficiency)



Implementation

* Reflective for performant and verified

 Normalization by Evaluation (NbE) (for B)
+ let-lifting monad (code-sharing)
+ rewriting (L0+rewrite)

+ more features



Evaluation

e It works!
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Performance

e rewrite_strat topdown
® rewrite_strat bottomup
repeat setoid rewrite

e Our approach

# binders for:
Curve25519: 90 (x64)or 188 (x32)

P-256: 150 (x64) or 400 (x32)
P-384: 300 (x64) or 916 (x32)
0 2000 4000 6000

# binders (also = # rewrites)
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Performance on

Fiat Cryptography
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+ Our approach w/ Coq’s VM

oOld approach (handwritten-CPS+VM)
e Qur approach w/ extracted OCaml
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Our Approach

* Dig deep to find the places of asymptotic blowup
e Understand the precise source of the blowup
* Fuse the different compiler passes deeply



Takeaways

* Opportunity: Automate Verification to Enable Innovation
* Big Problem: Asymptotic Performance
* My Contribution: Reflective Partial Evaluation

* Important Next Steps



Let’s take a step back

* We succeeded, but this was very hard

* All of this to work around inadequate asymptotic performance of the
proof engine

* This is typical!



What | did in my PhD

1% ® Performance engineering

Time Spent i .
(working around slowness in Coq)

B Coding new things
m Misc

m Discovering interesting new things
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Our current approach to performance

e Using abstraction to prevent excessive unfolding
e Carving out the proof engine...
e ...and replacing it with reflection



Abstraction is not enough

» Systems code is often written in an adversarial context
* Symmetric crypto code is often written empirically
* Performant code breaks abstraction barriers



Reflection will not save us

* Using a proof assistant is for easily inserting human ingenuity to prove
a broad range of things

* Using reflection is essentially giving up “easy” part

* As problems get bigger and harder and we need more ingenuity, it
won’t be cost-effective to do it reflectively

* Already in the partial evaluator | hit the same performance-scaling
issues that | was trying to avoid by writing it in the first place (albeit at
a smaller and surmountable scale)



Can we avoid carving out the proof engine?

* Where is the performance issue?

* Turns out that it’s pretty far from the problem we’re solving
* (This should be obvious, because if it wasn’t, reflection wouldn’t help.)

* Example: evar instance allocation has nothing to do with correctness of a
given C algorithm

* In my experience, it’s not about generating a proof trail and it’s not
even really about individual steps being slow

* It’s about asymptotics of accessing and updating data being tracked
* Sometimes just walking the term repeatedly is too much overhead



Not just an engineering challenge

* “Don’t make stupid choices” isn’t enough to get good asymptotic
performance

* Try writing rewrite strat
* inside the tactic engine
e every step considered as progress towards proving something
* linear in # of binders + # of rewrite locations + size of term
* really hard, maybe impossible!

* We need to systematically study proof engines with an eye towards
asymptotic performance!



Next Questions about Proof Engines

* Where does the performance overhead really come from?

* What things are people not currently doing due to performance
overhead?

 What is an adequate set of primitives?
 What are acceptable thresholds on asymptotic behavior?

* Is it possible to achieve adequate performance simultaneously on all
the primitives?



vAg
1@5 My hope

| think solving this problem—getting the basics of proof engines right,
asymptotically—will drastically accelerate the scale of what we as a
field can handle, and bring verification closer to its promise and

potential of enabling innovation in industry.



Thank you for your time and
attention!

Questions?



