
Performance Engineering of 
Proof-Based Software Systems 

at Scale
Jason Gross

Ph.D. Defense

MIT CSAIL

1November 30, 2020



Takeaways

• Opportunity: Automate Verification to Enable Innovation

• Big Problem: Asymptotic Performance

• My Contribution: Reflective Partial Evaluation

• Important Next Steps
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Fiat Crypto

• Joint work with Andres Erbsen, Jade Philipoom, Adam Chlipala, et al

• Used in majority of secure connections from web browsers
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Innovation with Cryptography

“Better!  Faster!  
Cheaper!”

• Hedging against 
more powerful 
attackers

• More 
mathematical 
security

• Reduce costs 
(server & user)
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“Don’t touch it;
it works!”

• Lots of room for 
error

• Enormous cost 
of error

• Hard to find 
errors

Mathematical 
Specification:
𝑎 ⋅ 𝑏 mod 𝑝

static inline void force_inline
fmul(felem output, const felem in2, const felem in) {
uint128_t t[5];
limb r0,r1,r2,r3,r4,s0,s1,s2,s3,s4,c;
r0 = in[0];
r1 = in[1];
r2 = in[2];
r3 = in[3];
r4 = in[4];
s0 = in2[0];
s1 = in2[1];
s2 = in2[2];
s3 = in2[3];
s4 = in2[4];
t[0] = ((uint128_t) r0) * s0;
t[1] = ((uint128_t) r0) * s1 + ((uint128_t) r1) * s0;
t[2] = ((uint128_t) r0) * s2 + ((uint128_t) r2) * s0 + ((uint128_t) r1) * s1;
t[3] = ((uint128_t) r0) * s3 + ((uint128_t) r3) * s0 + ((uint128_t) r1) * s2 + ((uint128_t) r2) * s1;
t[4] = ((uint128_t) r0) * s4 + ((uint128_t) r4) * s0 + ((uint128_t) r3) * s1 + ((uint128_t) r1) * s3 + ((uint128_t) r2) * s2;
r4 *= 19;
r1 *= 19;
r2 *= 19;
r3 *= 19;
t[0] += ((uint128_t) r4) * s1 + ((uint128_t) r1) * s4 + ((uint128_t) r2) * s3 + ((uint128_t) r3) * s2;
t[1] += ((uint128_t) r4) * s2 + ((uint128_t) r2) * s4 + ((uint128_t) r3) * s3;
t[2] += ((uint128_t) r4) * s3 + ((uint128_t) r3) * s4;
t[3] += ((uint128_t) r4) * s4;
r0 = (limb)t[0] & 0x7ffffffffffff; c = (limb)(t[0] >> 51);
t[1] += c; r1 = (limb)t[1] & 0x7ffffffffffff; c = (limb)(t[1] >> 51);
t[2] += c; r2 = (limb)t[2] & 0x7ffffffffffff; c = (limb)(t[2] >> 51);
t[3] += c; r3 = (limb)t[3] & 0x7ffffffffffff; c = (limb)(t[3] >> 51);
t[4] += c; r4 = (limb)t[4] & 0x7ffffffffffff; c = (limb)(t[4] >> 51);
r0 += c * 19; c = r0 >> 51; r0 = r0 & 0x7ffffffffffff;
r1 += c; c = r1 >> 51; r1 = r1 & 0x7ffffffffffff;
r2 += c;
output[0] = r0;
output[1] = r1;
output[2] = r2;
output[3] = r3;
output[4] = r4;
}



The Promise of Verification
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Mathematical 
Specification:
𝑎 ⋅ 𝑏 mod 𝑝

Proof that
code matches 

spec

static inline void force_inline
fmul(felem output, const felem in2, const felem in) {
uint128_t t[5];
limb r0,r1,r2,r3,r4,s0,s1,s2,s3,s4,c;
r0 = in[0];
r1 = in[1];
r2 = in[2];
r3 = in[3];
r4 = in[4];
s0 = in2[0];
s1 = in2[1];
s2 = in2[2];
s3 = in2[3];
s4 = in2[4];
t[0] = ((uint128_t) r0) * s0;
t[1] = ((uint128_t) r0) * s1 + ((uint128_t) r1) * s0;
t[2] = ((uint128_t) r0) * s2 + ((uint128_t) r2) * s0 + ((uint128_t) r1) * s1;
t[3] = ((uint128_t) r0) * s3 + ((uint128_t) r3) * s0 + ((uint128_t) r1) * s2 + ((uint128_t) r2) * s1;
t[4] = ((uint128_t) r0) * s4 + ((uint128_t) r4) * s0 + ((uint128_t) r3) * s1 + ((uint128_t) r1) * s3 + ((uint128_t) r2) * s2;
r4 *= 19;
r1 *= 19;
r2 *= 19;
r3 *= 19;
t[0] += ((uint128_t) r4) * s1 + ((uint128_t) r1) * s4 + ((uint128_t) r2) * s3 + ((uint128_t) r3) * s2;
t[1] += ((uint128_t) r4) * s2 + ((uint128_t) r2) * s4 + ((uint128_t) r3) * s3;
t[2] += ((uint128_t) r4) * s3 + ((uint128_t) r3) * s4;
t[3] += ((uint128_t) r4) * s4;
r0 = (limb)t[0] & 0x7ffffffffffff; c = (limb)(t[0] >> 51);
t[1] += c; r1 = (limb)t[1] & 0x7ffffffffffff; c = (limb)(t[1] >> 51);
t[2] += c; r2 = (limb)t[2] & 0x7ffffffffffff; c = (limb)(t[2] >> 51);
t[3] += c; r3 = (limb)t[3] & 0x7ffffffffffff; c = (limb)(t[3] >> 51);
t[4] += c; r4 = (limb)t[4] & 0x7ffffffffffff; c = (limb)(t[4] >> 51);
r0 += c * 19; c = r0 >> 51; r0 = r0 & 0x7ffffffffffff;
r1 += c; c = r1 >> 51; r1 = r1 & 0x7ffffffffffff;
r2 += c;
output[0] = r0;
output[1] = r1;
output[2] = r2;
output[3] = r3;
output[4] = r4;
}

Thinking modified from image by ArmOkay from the Noun Project CC BY 3.0



The Overhead of Verification

• 10x—100x overhead
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Lines of Code

CompCert

seL4

CertiKOS

Fiat Cryptography

5880

8700

6500

603

Lines of Verification

36,120

1,092,121

96,642

94,196



Automating Verification
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𝑎 ⋅ 𝑏 mod 𝑝

p

Image modified from Thinking by ArmOkay from the Noun Project; script by Berkah Icon from the Noun Project; write by royyanandrian from the Noun Project

Mathematical Specifications 𝑎 ⋅ 𝑏 mod 𝑞 𝑎 ⋅ 𝑏 mod 𝑟

static inline void force_inline

fmul(felem output, const felem in2, const felem in) {

uint128_t t[5];
limb r0,r1,r2,r3,r4,s0,s1,s2,s3,s4,c;

r0 = in[0];
r1 = in[1];

r2 = in[2];

r3 = in[3];
r4 = in[4];

s0 = in2[0];
s1 = in2[1];

s2 = in2[2];

s3 = in2[3];
s4 = in2[4];

t[0] = ((uint128_t) r0) * s0;
t[1] = ((uint128_t) r0) * s1 + ((uint128_t) r1) * s0;

t[2] = ((uint128_t) r0) * s2 + ((uint128_t) r2) * s0 + ((uint128_t) r1) * s1;

t[3] = ((uint128_t) r0) * s3 + ((uint128_t) r3) * s0 + ((uint128_t) r1) * s2 + ((uint128_t) r2) * s1;
t[4] = ((uint128_t) r0) * s4 + ((uint128_t) r4) * s0 + ((uint128_t) r3) * s1 + ((uint128_t) r1) * s3 + ((uint128_t) r2) * s2;

r4 *= 19;
r1 *= 19;

r2 *= 19;

r3 *= 19;
t[0] += ((uint128_t) r4) * s1 + ((uint128_t) r1) * s4 + ((uint128_t) r2) * s3 + ((uint128_t) r3) * s2;

t[1] += ((uint128_t) r4) * s2 + ((uint128_t) r2) * s4 + ((uint128_t) r3) * s3;
t[2] += ((uint128_t) r4) * s3 + ((uint128_t) r3) * s4;

t[3] += ((uint128_t) r4) * s4;

r0 = (limb)t[0] & 0x7ffffffffffff; c = (limb)(t[0] >> 51);
t[1] += c; r1 = (limb)t[1] & 0x7ffffffffffff; c = (limb)(t[1] >> 51);

t[2] += c; r2 = (limb)t[2] & 0x7ffffffffffff; c = (limb)(t[2] >> 51);
t[3] += c; r3 = (limb)t[3] & 0x7ffffffffffff; c = (limb)(t[3] >> 51);

t[4] += c; r4 = (limb)t[4] & 0x7ffffffffffff; c = (limb)(t[4] >> 51);

r0 += c * 19; c = r0 >> 51; r0 = r0 & 0x7ffffffffffff;
r1 += c; c = r1 >> 51; r1 = r1 & 0x7ffffffffffff;

r2 += c;
output[0] = r0;

output[1] = r1;

output[2] = r2;
output[3] = r3;

output[4] = r4;
}

static inline void force_inline

fmul(felem output, const felem in2, const felem in) {

uint128_t t[5];
limb r0,r1,r2,r3,r4,s0,s1,s2,s3,s4,c;

r0 = in[0];
r1 = in[1];

r2 = in[2];

r3 = in[3];
r4 = in[4];

s0 = in2[0];
s1 = in2[1];

s2 = in2[2];

s3 = in2[3];
s4 = in2[4];

t[0] = ((uint128_t) r0) * s0;
t[1] = ((uint128_t) r0) * s1 + ((uint128_t) r1) * s0;

t[2] = ((uint128_t) r0) * s2 + ((uint128_t) r2) * s0 + ((uint128_t) r1) * s1;

t[3] = ((uint128_t) r0) * s3 + ((uint128_t) r3) * s0 + ((uint128_t) r1) * s2 + ((uint128_t) r2) * s1;
t[4] = ((uint128_t) r0) * s4 + ((uint128_t) r4) * s0 + ((uint128_t) r3) * s1 + ((uint128_t) r1) * s3 + ((uint128_t) r2) * s2;

r4 *= 19;
r1 *= 19;

r2 *= 19;

r3 *= 19;
t[0] += ((uint128_t) r4) * s1 + ((uint128_t) r1) * s4 + ((uint128_t) r2) * s3 + ((uint128_t) r3) * s2;

t[1] += ((uint128_t) r4) * s2 + ((uint128_t) r2) * s4 + ((uint128_t) r3) * s3;
t[2] += ((uint128_t) r4) * s3 + ((uint128_t) r3) * s4;

t[3] += ((uint128_t) r4) * s4;

r0 = (limb)t[0] & 0x7ffffffffffff; c = (limb)(t[0] >> 51);
t[1] += c; r1 = (limb)t[1] & 0x7ffffffffffff; c = (limb)(t[1] >> 51);

t[2] += c; r2 = (limb)t[2] & 0x7ffffffffffff; c = (limb)(t[2] >> 51);
t[3] += c; r3 = (limb)t[3] & 0x7ffffffffffff; c = (limb)(t[3] >> 51);

t[4] += c; r4 = (limb)t[4] & 0x7ffffffffffff; c = (limb)(t[4] >> 51);

r0 += c * 19; c = r0 >> 51; r0 = r0 & 0x7ffffffffffff;
r1 += c; c = r1 >> 51; r1 = r1 & 0x7ffffffffffff;

r2 += c;
output[0] = r0;

output[1] = r1;

output[2] = r2;
output[3] = r3;

output[4] = r4;
}

static inline void force_inline

fmul(felem output, const felem in2, const felem in) {
uint128_t t[5];

limb r0,r1,r2,r3,r4,s0,s1,s2,s3,s4,c;
r0 = in[0];

r1 = in[1];

r2 = in[2];
r3 = in[3];

r4 = in[4];
s0 = in2[0];

s1 = in2[1];

s2 = in2[2];
s3 = in2[3];

s4 = in2[4];
t[0] = ((uint128_t) r0) * s0;

t[1] = ((uint128_t) r0) * s1 + ((uint128_t) r1) * s0;

t[2] = ((uint128_t) r0) * s2 + ((uint128_t) r2) * s0 + ((uint128_t) r1) * s1;
t[3] = ((uint128_t) r0) * s3 + ((uint128_t) r3) * s0 + ((uint128_t) r1) * s2 + ((uint128_t) r2) * s1;

t[4] = ((uint128_t) r0) * s4 + ((uint128_t) r4) * s0 + ((uint128_t) r3) * s1 + ((uint128_t) r1) * s3 + ((uint128_t) r2) * s2;
r4 *= 19;

r1 *= 19;

r2 *= 19;
r3 *= 19;

t[0] += ((uint128_t) r4) * s1 + ((uint128_t) r1) * s4 + ((uint128_t) r2) * s3 + ((uint128_t) r3) * s2;
t[1] += ((uint128_t) r4) * s2 + ((uint128_t) r2) * s4 + ((uint128_t) r3) * s3;

t[2] += ((uint128_t) r4) * s3 + ((uint128_t) r3) * s4;

t[3] += ((uint128_t) r4) * s4;
r0 = (limb)t[0] & 0x7ffffffffffff; c = (limb)(t[0] >> 51);

t[1] += c; r1 = (limb)t[1] & 0x7ffffffffffff; c = (limb)(t[1] >> 51);
t[2] += c; r2 = (limb)t[2] & 0x7ffffffffffff; c = (limb)(t[2] >> 51);

t[3] += c; r3 = (limb)t[3] & 0x7ffffffffffff; c = (limb)(t[3] >> 51);

t[4] += c; r4 = (limb)t[4] & 0x7ffffffffffff; c = (limb)(t[4] >> 51);
r0 += c * 19; c = r0 >> 51; r0 = r0 & 0x7ffffffffffff;

r1 += c; c = r1 >> 51; r1 = r1 & 0x7ffffffffffff;
r2 += c;

output[0] = r0;

output[1] = r1;
output[2] = r2;

output[3] = r3;

output[4] = r4;
}

Generated Code + Proof q r



Our script is run and checked by…

• Dependently typed, interactive, tactic-driven proof assistants

• Dependently typed proof assistants are expressive

• Interactivity allows easy insertion of human ingenuity

• Tactics allow automation
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The Big Problem in Automating Verification

• Asymptotic performance

• We can automate verification of toy examples in the proof engine

• BUT this automation takes way too long on real examples

• My work has been fixing this performance problem
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The Potential of Automating Verification

Fiat Cryptography:
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94,196

188,365

Original Lines of Code Lines of Verification Lines of Generated Code



It’s really easy to use!
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It’s really easy to use!
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Requirements

1. Code we generate must be fast and constant time

Justification: server load, security

2. Easy to add and prove new algorithm, prime, architecture, …

Justification: scalability of human effort, edit-compile-debug loops

3. Verification should not run forever

Justification: usability
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Where was the asymptotic performance issue?
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Fiat Cryptography Pieces
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Verification Time: 1 limb
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What is Partial Evaluation?
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Peanut Butter modified from image by P Thanga Vignesh from the Noun Project CC BY 3.0; Jam modified from image by Nikita Kozin from the Noun Project CC BY 

3.0; Bread modified from image by Joanna Giansanti from the Noun Project CC BY 3.0; Sandwich bag by Kate Maldjian from the Noun Project; Shelves by Lluisa
Iborra from the Noun Project; Refrigerator by shashank singh from the Noun Project
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What is Partial Evaluation?
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Partial 
Evaluation𝑥 + 2 + 𝑦 − 𝑥 + 6 𝑦 + 8



Partial Evaluation in Fiat Cryptography
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Template Code:
Definition mul (p q:list (Z*Z)):list (Z*Z) :=
flat_map (fun '(w, t) =>
map (fun '(w', t') =>

(w * w', t * t’))
q) p.

Fixpoint square (p:list (Z*Z)):list (Z*Z)
:= match p with

| [] => []
| (w, t) :: ts

=> let two_t := 2 * t in
((w * w, t * t)
:: map (λ '(w', t'), (w * w', two_t * t')) ts)

++ square ts
end.

Definition split (s:Z) (p:list(Z*Z)):list (Z*Z) * list (Z*Z)
:= let '(hi, lo) := partition (fun '(w, _) => w mod s =? 0) p in

(lo, map (fun '(w, t) => (w / s, t)) hi).
Definition reduce (s:Z) (c:list (Z*Z)) (p:list (Z*Z)):list (Z*Z)
:= let '(lo, hi) := split s p in lo ++ mul c hi.

static void
fiat_25519_carry_square(uint64_t
out1[5], const uint64_t arg1[5]) 
{
uint64_t x1;
uint64_t x2;
uint64_t x3;
uint64_t x4;
uint64_t x5;
uint64_t x6;
uint64_t x7;
uint64_t x8;
fiat_25519_uint128 x9;
fiat_25519_uint128 x10;
fiat_25519_uint128 x11;
fiat_25519_uint128 x12;
fiat_25519_uint128 x13;
fiat_25519_uint128 x14;
fiat_25519_uint128 x15;
fiat_25519_uint128 x16;
fiat_25519_uint128 x17;
fiat_25519_uint128 x18;
fiat_25519_uint128 x19;
fiat_25519_uint128 x20;
fiat_25519_uint128 x21;
fiat_25519_uint128 x22;
fiat_25519_uint128 x23;
fiat_25519_uint128 x24;
uint64_t x25;
uint64_t x26;

fiat_25519_uint128 x27;
fiat_25519_uint128 x28;
fiat_25519_uint128 x29;
fiat_25519_uint128 x30;
fiat_25519_uint128 x31;
uint64_t x32;
uint64_t x33;
fiat_25519_uint128 x34;
uint64_t x35;
uint64_t x36;
fiat_25519_uint128 x37;
uint64_t x38;
uint64_t x39;
fiat_25519_uint128 x40;
uint64_t x41;
uint64_t x42;
uint64_t x43;
uint64_t x44;
uint64_t x45;
uint64_t x46;
uint64_t x47;
fiat_25519_uint1 x48;
uint64_t x49;
uint64_t x50;
x1 = ((arg1[4]) * 
UINT8_C(0x13));
x2 = (x1 * 0x2);
x3 = ((arg1[4]) * 0x2);
x4 = ((arg1[3]) * 
UINT8_C(0x13));

x5 = (x4 * 0x2);
x6 = ((arg1[3]) * 0x2);
x7 = ((arg1[2]) * 0x2);
x8 = ((arg1[1]) * 0x2);
x9 = 
((fiat_25519_uint128)(arg1[4]) * 
x1);
x10 = 
((fiat_25519_uint128)(arg1[3]) * 
x2);
x11 = 
((fiat_25519_uint128)(arg1[3]) * 
x4);
x12 = 
((fiat_25519_uint128)(arg1[2]) * 
x2);
x13 = 
((fiat_25519_uint128)(arg1[2]) * 
x5);
x14 = 
((fiat_25519_uint128)(arg1[2]) * 
(arg1[2]));
x15 = 
((fiat_25519_uint128)(arg1[1]) * 
x2);
x16 = 
((fiat_25519_uint128)(arg1[1]) * 
x6);
x17 = 
((fiat_25519_uint128)(arg1[1]) * 

x7);
x18 = 
((fiat_25519_uint128)(arg1[1]) * 
(arg1[1]));
x19 = 
((fiat_25519_uint128)(arg1[0]) * 
x3);
x20 = 
((fiat_25519_uint128)(arg1[0]) * 
x6);
x21 = 
((fiat_25519_uint128)(arg1[0]) * 
x7);
x22 = 
((fiat_25519_uint128)(arg1[0]) * 
x8);
x23 = 
((fiat_25519_uint128)(arg1[0]) * 
(arg1[0]));
x24 = (x23 + (x15 + x13));
x25 = (uint64_t)(x24 >> 51);
x26 = (uint64_t)(x24 & 
UINT64_C(0x7ffffffffffff));
x27 = (x19 + (x16 + x14));
x28 = (x20 + (x17 + x9));
x29 = (x21 + (x18 + x10));
x30 = (x22 + (x12 + x11));
x31 = (x25 + x30);
x32 = (uint64_t)(x31 >> 51);
x33 = (uint64_t)(x31 & 

UINT64_C(0x7ffffffffffff));
x34 = (x32 + x29);
x35 = (uint64_t)(x34 >> 51);
x36 = (uint64_t)(x34 & 
UINT64_C(0x7ffffffffffff));
x37 = (x35 + x28);
x38 = (uint64_t)(x37 >> 51);
x39 = (uint64_t)(x37 & 
UINT64_C(0x7ffffffffffff));
x40 = (x38 + x27);
x41 = (uint64_t)(x40 >> 51);
x42 = (uint64_t)(x40 & 
UINT64_C(0x7ffffffffffff));
x43 = (x41 * UINT8_C(0x13));
x44 = (x26 + x43);
x45 = (x44 >> 51);
x46 = (x44 & 
UINT64_C(0x7ffffffffffff));
x47 = (x45 + x33);
x48 = (fiat_25519_uint1)(x47 >> 
51);
x49 = (x47 & 
UINT64_C(0x7ffffffffffff));
x50 = (x48 + x36);
out1[0] = x46;
out1[1] = x49;
out1[2] = x50;
out1[3] = x39;
out1[4] = x42;
}

static void fiat_25519_carry_square(uint32_t
out1[10], const uint32_t arg1[10]) {
uint32_t x1;
uint32_t x2;
uint32_t x3;
uint32_t x4;
uint64_t x5;
uint32_t x6;
uint32_t x7;
uint32_t x8;
uint32_t x9;
uint32_t x10;
uint64_t x11;
uint32_t x12;
uint32_t x13;
uint32_t x14;
uint32_t x15;
uint32_t x16;
uint32_t x17;
uint32_t x18;
uint64_t x19;
uint64_t x20;
uint64_t x21;
uint64_t x22;
uint64_t x23;
uint64_t x24;
uint64_t x25;
uint64_t x26;
uint64_t x27;
uint64_t x28;
uint64_t x29;
uint64_t x30;
uint64_t x31;
uint64_t x32;
uint64_t x33;
uint64_t x34;
uint64_t x35;
uint64_t x36;
uint64_t x37;
uint64_t x38;
uint64_t x39;
uint64_t x40;
uint64_t x41;
uint64_t x42;
uint64_t x43;
uint64_t x44;
uint64_t x45;
uint64_t x46;
uint64_t x47;
uint64_t x48;
uint64_t x49;
uint64_t x50;
uint64_t x51;
uint64_t x52;

uint64_t x53;
uint64_t x54;
uint64_t x55;
uint64_t x56;
uint64_t x57;
uint64_t x58;
uint64_t x59;
uint64_t x60;
uint64_t x61;
uint64_t x62;
uint64_t x63;
uint64_t x64;
uint64_t x65;
uint64_t x66;
uint64_t x67;
uint64_t x68;
uint64_t x69;
uint64_t x70;
uint64_t x71;
uint64_t x72;
uint64_t x73;
uint64_t x74;
uint64_t x75;
uint32_t x76;
uint64_t x77;
uint64_t x78;
uint64_t x79;
uint64_t x80;
uint64_t x81;
uint64_t x82;
uint64_t x83;
uint64_t x84;
uint64_t x85;
uint64_t x86;
uint64_t x87;
uint32_t x88;
uint64_t x89;
uint64_t x90;
uint32_t x91;
uint64_t x92;
uint64_t x93;
uint32_t x94;
uint64_t x95;
uint64_t x96;
uint32_t x97;
uint64_t x98;
uint64_t x99;
uint32_t x100;
uint64_t x101;
uint64_t x102;
uint32_t x103;
uint64_t x104;
uint64_t x105;
uint32_t x106;

uint64_t x107;
uint64_t x108;
uint32_t x109;
uint64_t x110;
uint64_t x111;
uint32_t x112;
uint64_t x113;
uint64_t x114;
uint32_t x115;
uint32_t x116;
uint32_t x117;
fiat_25519_uint1 x118;
uint32_t x119;
uint32_t x120;
x1 = ((arg1[9]) * UINT8_C(0x13));
x2 = (x1 * 0x2);
x3 = ((arg1[9]) * 0x2);
x4 = ((arg1[8]) * UINT8_C(0x13));
x5 = ((uint64_t)x4 * 0x2);
x6 = ((arg1[8]) * 0x2);
x7 = ((arg1[7]) * UINT8_C(0x13));
x8 = (x7 * 0x2);
x9 = ((arg1[7]) * 0x2);
x10 = ((arg1[6]) * UINT8_C(0x13));
x11 = ((uint64_t)x10 * 0x2);
x12 = ((arg1[6]) * 0x2);
x13 = ((arg1[5]) * UINT8_C(0x13));
x14 = ((arg1[5]) * 0x2);
x15 = ((arg1[4]) * 0x2);
x16 = ((arg1[3]) * 0x2);
x17 = ((arg1[2]) * 0x2);
x18 = ((arg1[1]) * 0x2);
x19 = ((uint64_t)(arg1[9]) * (x1 * 0x2));
x20 = ((uint64_t)(arg1[8]) * x2);
x21 = ((uint64_t)(arg1[8]) * x4);
x22 = ((arg1[7]) * ((uint64_t)x2 * 0x2));
x23 = ((arg1[7]) * x5);
x24 = ((uint64_t)(arg1[7]) * (x7 * 0x2));
x25 = ((uint64_t)(arg1[6]) * x2);
x26 = ((arg1[6]) * x5);
x27 = ((uint64_t)(arg1[6]) * x8);
x28 = ((uint64_t)(arg1[6]) * x10);
x29 = ((arg1[5]) * ((uint64_t)x2 * 0x2));
x30 = ((arg1[5]) * x5);
x31 = ((arg1[5]) * ((uint64_t)x8 * 0x2));
x32 = ((arg1[5]) * x11);
x33 = ((uint64_t)(arg1[5]) * (x13 * 0x2));
x34 = ((uint64_t)(arg1[4]) * x2);
x35 = ((arg1[4]) * x5);
x36 = ((uint64_t)(arg1[4]) * x8);
x37 = ((arg1[4]) * x11);
x38 = ((uint64_t)(arg1[4]) * x14);
x39 = ((uint64_t)(arg1[4]) * (arg1[4]));
x40 = ((arg1[3]) * ((uint64_t)x2 * 0x2));

x41 = ((arg1[3]) * x5);
x42 = ((arg1[3]) * ((uint64_t)x8 * 0x2));
x43 = ((uint64_t)(arg1[3]) * x12);
x44 = ((uint64_t)(arg1[3]) * (x14 * 0x2));
x45 = ((uint64_t)(arg1[3]) * x15);
x46 = ((uint64_t)(arg1[3]) * ((arg1[3]) * 
0x2));
x47 = ((uint64_t)(arg1[2]) * x2);
x48 = ((arg1[2]) * x5);
x49 = ((uint64_t)(arg1[2]) * x9);
x50 = ((uint64_t)(arg1[2]) * x12);
x51 = ((uint64_t)(arg1[2]) * x14);
x52 = ((uint64_t)(arg1[2]) * x15);
x53 = ((uint64_t)(arg1[2]) * x16);
x54 = ((uint64_t)(arg1[2]) * (arg1[2]));
x55 = ((arg1[1]) * ((uint64_t)x2 * 0x2));
x56 = ((uint64_t)(arg1[1]) * x6);
x57 = ((uint64_t)(arg1[1]) * (x9 * 0x2));
x58 = ((uint64_t)(arg1[1]) * x12);
x59 = ((uint64_t)(arg1[1]) * (x14 * 0x2));
x60 = ((uint64_t)(arg1[1]) * x15);
x61 = ((uint64_t)(arg1[1]) * (x16 * 0x2));
x62 = ((uint64_t)(arg1[1]) * x17);
x63 = ((uint64_t)(arg1[1]) * ((arg1[1]) * 
0x2));
x64 = ((uint64_t)(arg1[0]) * x3);
x65 = ((uint64_t)(arg1[0]) * x6);
x66 = ((uint64_t)(arg1[0]) * x9);
x67 = ((uint64_t)(arg1[0]) * x12);
x68 = ((uint64_t)(arg1[0]) * x14);
x69 = ((uint64_t)(arg1[0]) * x15);
x70 = ((uint64_t)(arg1[0]) * x16);
x71 = ((uint64_t)(arg1[0]) * x17);
x72 = ((uint64_t)(arg1[0]) * x18);
x73 = ((uint64_t)(arg1[0]) * (arg1[0]));
x74 = (x73 + (x55 + (x48 + (x42 + (x37 + 
x33)))));
x75 = (x74 >> 26);
x76 = (uint32_t)(x74 & UINT32_C(0x3ffffff));
x77 = (x64 + (x56 + (x49 + (x43 + x38))));
x78 = (x65 + (x57 + (x50 + (x44 + (x39 + 
x19)))));
x79 = (x66 + (x58 + (x51 + (x45 + x20))));
x80 = (x67 + (x59 + (x52 + (x46 + (x22 + 
x21)))));
x81 = (x68 + (x60 + (x53 + (x25 + x23))));
x82 = (x69 + (x61 + (x54 + (x29 + (x26 + 
x24)))));
x83 = (x70 + (x62 + (x34 + (x30 + x27))));
x84 = (x71 + (x63 + (x40 + (x35 + (x31 + 
x28)))));
x85 = (x72 + (x47 + (x41 + (x36 + x32))));
x86 = (x75 + x85);
x87 = (x86 >> 25);

x88 = (uint32_t)(x86 & UINT32_C(0x1ffffff));
x89 = (x87 + x84);
x90 = (x89 >> 26);
x91 = (uint32_t)(x89 & UINT32_C(0x3ffffff));
x92 = (x90 + x83);
x93 = (x92 >> 25);
x94 = (uint32_t)(x92 & UINT32_C(0x1ffffff));
x95 = (x93 + x82);
x96 = (x95 >> 26);
x97 = (uint32_t)(x95 & UINT32_C(0x3ffffff));
x98 = (x96 + x81);
x99 = (x98 >> 25);
x100 = (uint32_t)(x98 & 
UINT32_C(0x1ffffff));
x101 = (x99 + x80);
x102 = (x101 >> 26);
x103 = (uint32_t)(x101 & 
UINT32_C(0x3ffffff));
x104 = (x102 + x79);
x105 = (x104 >> 25);
x106 = (uint32_t)(x104 & 
UINT32_C(0x1ffffff));
x107 = (x105 + x78);
x108 = (x107 >> 26);
x109 = (uint32_t)(x107 & 
UINT32_C(0x3ffffff));
x110 = (x108 + x77);
x111 = (x110 >> 25);
x112 = (uint32_t)(x110 & 
UINT32_C(0x1ffffff));
x113 = (x111 * UINT8_C(0x13));
x114 = (x76 + x113);
x115 = (uint32_t)(x114 >> 26);
x116 = (uint32_t)(x114 & 
UINT32_C(0x3ffffff));
x117 = (x115 + x88);
x118 = (fiat_25519_uint1)(x117 >> 25);
x119 = (x117 & UINT32_C(0x1ffffff));
x120 = (x118 + x91);
out1[0] = x116;
out1[1] = x119;
out1[2] = x120;
out1[3] = x94;
out1[4] = x97;
out1[5] = x100;
out1[6] = x103;
out1[7] = x106;
out1[8] = x109;
out1[9] = x112;
}

32-bit square

64-bit square



Partial Evaluation is slow
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What is a proof engine?

• Declare a goal to prove

• Issue instructions to make partial progress on proving

• Can write scripts to automate issuing of instructions

• Tracks the progress and current state

• Can issue a trail (proof certificate) to be checked by a small checker 
(“kernel”)
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Our Approach

• Dig deep to find the places of asymptotic blowup

• Understand the precise source of the blowup

• Fuse the different compiler passes deeply 
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Requirements for Partial Evaluation

• β-reduction

• ιδ-reduction + rewrites

• code sharing preservation
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β-reduction

• Useful for eliminating function call overhead in the generated code, 
which is important for output code performance

• Example: ((λ x. x + 5) 2) ⇝ 2 + 5

November 30, 2020 27



ιδ-reduction + rewrites

• Useful for precomputation and eliminating function call overhead

• Arithmetic simplification necessary for getting right asymptotics of 
generated lines of code in fiat-crypto (quadratic vs. quartic)

• Example:
map (λ x. x + 5) [0; 1; z] ⇝ [(λ x. x + 5) 0; (λ x. x + 5) 1; (λ x. x + 5) z]
• Note that this leaves β redexes

• Without β-reduction, this can blow up code size

• Fusing rewriting with β-reduction in a way that scales
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Code Sharing Preservation

• Necessary for avoiding exponential blowup in generated code size

• Example:
map f (let y := x + x in let z := y + y in [z; z; z])
⇝ let y := x + x in let z := y + y in map f [z; z; z]
⇝ let y := x + x in let z := y + y in [f z; f z; f z]

• Fusing this with β- and ι- reduction
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Compiler passes

• β-reduction
• eliminating function call overhead

• ιδ-reduction + rewrites
• inlining definitions to eliminate function call overhead

• arithmetic simplification

• code sharing preservation
• to avoid exponential blowup in code size
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Extra Requirements

• Verified
• Without extending the TCB

• Performant
• Should not introduce extra super-linear factors
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The compiler passes need to be fused

• Needed to achieve adequate asymptotic performance!

• Separating out rewriting results in quartic rather than quadratic loc

• Separating out ι-reduction (constant propagation) results in enormous
code-size blowup

• Separating out code-sharing-preservation results in enormous code-
size blowup
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Implementation

• Reflective for performant and verified

• Normalization by Evaluation (NbE) (for β)

+ let-lifting monad (code-sharing)

+ rewriting (ιδ+rewrite)
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Proof by Reflection

• Most steps in the proof engine make partial progress towards a goal 
and leave behind a trail

• Coq’s proof engine has a highly optimized primitive step for validating 
the output of a computation

• Phrasing the goal so that we can just validate the output of a 
computation
• Verifying the process, rather than having an ad-hoc process that leaves 

behind a trail verifying the output
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Non-Reflection Example

Inductive is_even:ℕ→ℙ := |zero_even : is_even 0 |two_plus_even n : is_even n → is_even (2+n).

November 30, 2020 35Thinking modified from image by ArmOkay from the Noun Project CC BY 3.0; Coq logo from https://calebstanford.com/2019/01/15/coq-vector-image/
script by Berkah Icon from the Noun Project; write by royyanandrian from the Noun Project

Goal is_even 9002. Goal is:
is_even 9002

repeat constructor
Current Proof is:

two_plus_even 9000
(two_plus_even 8998
(two_plus_even 8996
(two_plus_even 8994 …

Qed

✔



Reflection Example: Up-Front Work

Inductive is_even:ℕ→ℙ := |zero_even : is_even 0 |two_plus_even n : is_even n → is_even (2+n).
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Inductive parity := even | odd.

Definition flip_parity p
:= match p with even => odd | odd => even end.

Fixpoint parity_of (n : nat) : parity :=
match n with
| O => even
| S n' => flip_parity (parity_of n') end.

✔

✔

✔
Lemma parity_of_correct
: ∀ n, parity_of n = even → is_even n.
Proof.

intro n; assert (H' : match parity_of n with
| even => is_even n
| odd => is_even (S n) end).

{ induction n as [|n IH]; cbn; try constructor.
destruct (parity_of n); cbn; try constructor; try assumption. }

intro H; rewrite H in H'; assumption.

Qed. ✔



Reflection Example

Inductive is_even:ℕ→ℙ := |zero_even : is_even 0 |two_plus_even n : is_even n → is_even (2+n).

November 30, 2020 37Thinking modified from image by ArmOkay from the Noun Project CC BY 3.0
Coq logo from https://calebstanford.com/2019/01/15/coq-vector-image/

Goal is_even 9002. Goal is:
is_even 9002

apply parity_of_correct
Goal is:

parity_of 9002 = even

Qed

✔

vm_compute; reflexivity. Current Proof is:
parity_of_correct 9002 
(eq_refl even)

Inductive parity := even | odd.
Fixpoint parity_of : ℕ → parity

Lemma parity_of_correct
: ∀ n, parity_of n = even → is_even n.



Why reflective rewriting?

• Reflective rewriting is asymptotically faster 

• The trail left by proof-engine-based rewriting is super-linear in the 
size of the code being transformed

• Tracking the goal incurs super-linear overhead in the number of 
binders

• Recursively computing only the output is asymptotically faster

• Side benefit: we can extract it to OCaml to run as a nifty command-
line utility
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Normalization by Evaluation

Goal: Reuse substitution in Gallina for substitution in ASTs

Example: Turn “(λ z p n x. z + (x + (p + n))) 0 1 (-1)” into

(λ z p n x. (λ a b. rewrite(“+”, a, b))
z ((λ a b. rewrite(“+”, a, b))

x ((λ a b. rewrite(“+”, a, b))
p n)))) (rewrite(“0”)) (rewrite(“1”)) (rewrite(“-1”))

Expression application ⇝ Gallina application

Expression abstraction ⇝ Gallina abstraction
Expression constants ⇝ rewriter invocations on η-expanded forms
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Normalization by Evaluation

Goal: Reuse substitution in Gallina for substitution in ASTs

Example: Turn “(λ z p n x. z + (x + (p + n))) 0 1 (-1)” into

(λ z p n x. (λ a b. rewrite(“+”, a, b))
z ((λ a b. rewrite(“+”, a, b))

x ((λ a b. rewrite(“+”, a, b))
p n)))) (rewrite(“0”)) (rewrite(“1”)) (rewrite(“-1”))

Then reduce!
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Normalization by Evaluation

Goal: Reuse substitution in Gallina for substitution in ASTs

Example: Turn “(λ z p n x. z + (x + (p + n))) 0 1 (-1)” into

(λ z p n x. (λ a b. rewrite(“+”, a, b))
z ((λ a b. rewrite(“+”, a, b))

x ((λ a b. rewrite(“+”, a, b))
p n)))) (rewrite(“0”)) (rewrite(“1”)) (rewrite(“-1”))

Then reduce!

⇝ (λ x. rewrite(“+”, “0”, rewrite(“+”, “x”, rewrite(“+”, “1”, “-1”))))
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Let-Lifting

• Let-Lifting monad for code-sharing-preservation
• Assignment + return; bind is derived
• Rewrote NbE in this Let-Lifting monad
• Haven’t seen it in the literature, but it’s not too tricky
• Automatic ι-reduction was too tricky to figure out, so I hard-coded 

the cases we needed for fiat-crypto
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Rewriting

• For ιδ+rewrite
• Using Parametric Higher-Order Abstract Syntax (PHOAS) to deal with 

binders allows delaying rewriting
• We thus achieve complete rewriting in a single pass when the rewrite 

rules form a DAG
• We have extra magic for when they don’t.  The magic is called “fuel” and “try 

again”.
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More Features

• Select rewrite rule based on Coq’s pattern matching so we don’t need 
to walk the entire list of rewrite rules at every identifier/constant 
node just to see which ones apply

• On-the-fly emission of a type of codes for relevant constants 
• Partial evaluation on the generated rewriter (further 2x efficiency)
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Implementation

• Reflective for performant and verified

• Normalization by Evaluation (NbE) (for β)

+ let-lifting monad (code-sharing)

+ rewriting (ιδ+rewrite)

+ more features
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Evaluation

• It works!

• It's performant!
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Performance
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Performance on Fiat Cryptography
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Our Approach

• Dig deep to find the places of asymptotic blowup

• Understand the precise source of the blowup

• Fuse the different compiler passes deeply 
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Takeaways

• Opportunity: Automate Verification to Enable Innovation

• Big Problem: Asymptotic Performance

• My Contribution: Reflective Partial Evaluation

• Important Next Steps
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Let’s take a step back

• We succeeded, but this was very hard

• All of this to work around inadequate asymptotic performance of the 
proof engine

• This is typical!
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What I did in my PhD

80%

15%

4%

1%Time Spent
Performance engineering
(working around slowness in Coq)

Coding new things

Misc

Discovering interesting new things

59November 30, 2020



Our current approach to performance

• Using abstraction to prevent excessive unfolding

• Carving out the proof engine… 

• …and replacing it with reflection
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Abstraction is not enough

• Systems code is often written in an adversarial context

• Symmetric crypto code is often written empirically

• Performant code breaks abstraction barriers
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Reflection will not save us

• Using a proof assistant is for easily inserting human ingenuity to prove 
a broad range of things

• Using reflection is essentially giving up “easy” part 

• As problems get bigger and harder and we need more ingenuity, it 
won’t be cost-effective to do it reflectively

• Already in the partial evaluator I hit the same performance-scaling 
issues that I was trying to avoid by writing it in the first place (albeit at 
a smaller and surmountable scale)
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Can we avoid carving out the proof engine?

• Where is the performance issue?

• Turns out that it’s pretty far from the problem we’re solving
• (This should be obvious, because if it wasn’t, reflection wouldn’t help.)

• Example: evar instance allocation has nothing to do with correctness of a 
given C algorithm

• In my experience, it’s not about generating a proof trail and it’s not 
even really about individual steps being slow
• It’s about asymptotics of accessing and updating data being tracked

• Sometimes just walking the term repeatedly is too much overhead
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Not just an engineering challenge

• “Don’t make stupid choices” isn’t enough to get good asymptotic 
performance

• Try writing rewrite_strat
• inside the tactic engine

• every step considered as progress towards proving something

• linear in # of binders + # of rewrite locations + size of term

• really hard, maybe impossible!

• We need to systematically study proof engines with an eye towards 
asymptotic performance!
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Next Questions about Proof Engines

• Where does the performance overhead really come from?

• What things are people not currently doing due to performance 
overhead?

• What is an adequate set of primitives?

• What are acceptable thresholds on asymptotic behavior? 

• Is it possible to achieve adequate performance simultaneously on all 
the primitives?
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My hope

I think solving this problem—getting the basics of proof engines right,
asymptotically—will drastically accelerate the scale of what we as a
field can handle, and bring verification closer to its promise and
potential of enabling innovation in industry.
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Thank you for your time and 
attention!

Questions?
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