
Performance Engineering of
Proof-Based Software Systems

at Scale
Jason Gross

Ph.D. Defense

MIT CSAIL

1November 30, 2020

Takeaways

• Opportunity: Automate Verification to Enable Innovation

• Big Problem: Asymptotic Performance

• My Contribution: Reflective Partial Evaluation

• Important Next Steps

November 30, 2020 2

Fiat Crypto

• Joint work with Andres Erbsen, Jade Philipoom, Adam Chlipala, et al

• Used in majority of secure connections from web browsers

November 30, 2020 3

Firefox Logo from https://www-archive.mozilla.org/foundation/identity-guidelines/firefox
HTTPS image modified from image by Sean MacEntee, CC BY 2.0, via Wikimedia Commons

Chrome logo from https://www.logo.wine/logo/Google_Chrome ©2018 Google LLC All rights reserved. Chrome is a trademark of Google LLC.
Go Logo By The Go Authors - https://blog.golang.org/go-brand, Public Domain, https://commons.wikimedia.org/w/index.php?curid=82371649

File:Logo of WireGuard.svg. (2020, April 21). Wikimedia Commons, the free media repository. Retrieved 23:20, November 28, 2020 from Wikimedia Commons
Libra logo from By Libra Association - https://libra.org/, Public Domain, https://commons.wikimedia.org/w/index.php?curid=79808006

https://creativecommons.org/licenses/by/2.0
https://commons.wikimedia.org/wiki/File:HTTPS_icon.png
https://commons.wikimedia.org/w/index.php?curid=82371649
https://commons.wikimedia.org/w/index.php?title=File:Logo_of_WireGuard.svg&oldid=413611739

Innovation with Cryptography

“Better! Faster!
Cheaper!”

• Hedging against
more powerful
attackers

• More
mathematical
security

• Reduce costs
(server & user)

November 30, 2020 4

“Don’t touch it;
it works!”

• Lots of room for
error

• Enormous cost
of error

• Hard to find
errors

Mathematical
Specification:
𝑎 ⋅ 𝑏 mod 𝑝

static inline void force_inline
fmul(felem output, const felem in2, const felem in) {
uint128_t t[5];
limb r0,r1,r2,r3,r4,s0,s1,s2,s3,s4,c;
r0 = in[0];
r1 = in[1];
r2 = in[2];
r3 = in[3];
r4 = in[4];
s0 = in2[0];
s1 = in2[1];
s2 = in2[2];
s3 = in2[3];
s4 = in2[4];
t[0] = ((uint128_t) r0) * s0;
t[1] = ((uint128_t) r0) * s1 + ((uint128_t) r1) * s0;
t[2] = ((uint128_t) r0) * s2 + ((uint128_t) r2) * s0 + ((uint128_t) r1) * s1;
t[3] = ((uint128_t) r0) * s3 + ((uint128_t) r3) * s0 + ((uint128_t) r1) * s2 + ((uint128_t) r2) * s1;
t[4] = ((uint128_t) r0) * s4 + ((uint128_t) r4) * s0 + ((uint128_t) r3) * s1 + ((uint128_t) r1) * s3 + ((uint128_t) r2) * s2;
r4 *= 19;
r1 *= 19;
r2 *= 19;
r3 *= 19;
t[0] += ((uint128_t) r4) * s1 + ((uint128_t) r1) * s4 + ((uint128_t) r2) * s3 + ((uint128_t) r3) * s2;
t[1] += ((uint128_t) r4) * s2 + ((uint128_t) r2) * s4 + ((uint128_t) r3) * s3;
t[2] += ((uint128_t) r4) * s3 + ((uint128_t) r3) * s4;
t[3] += ((uint128_t) r4) * s4;
r0 = (limb)t[0] & 0x7ffffffffffff; c = (limb)(t[0] >> 51);
t[1] += c; r1 = (limb)t[1] & 0x7ffffffffffff; c = (limb)(t[1] >> 51);
t[2] += c; r2 = (limb)t[2] & 0x7ffffffffffff; c = (limb)(t[2] >> 51);
t[3] += c; r3 = (limb)t[3] & 0x7ffffffffffff; c = (limb)(t[3] >> 51);
t[4] += c; r4 = (limb)t[4] & 0x7ffffffffffff; c = (limb)(t[4] >> 51);
r0 += c * 19; c = r0 >> 51; r0 = r0 & 0x7ffffffffffff;
r1 += c; c = r1 >> 51; r1 = r1 & 0x7ffffffffffff;
r2 += c;
output[0] = r0;
output[1] = r1;
output[2] = r2;
output[3] = r3;
output[4] = r4;
}

The Promise of Verification

November 30, 2020 5

Mathematical
Specification:
𝑎 ⋅ 𝑏 mod 𝑝

Proof that
code matches

spec

static inline void force_inline
fmul(felem output, const felem in2, const felem in) {
uint128_t t[5];
limb r0,r1,r2,r3,r4,s0,s1,s2,s3,s4,c;
r0 = in[0];
r1 = in[1];
r2 = in[2];
r3 = in[3];
r4 = in[4];
s0 = in2[0];
s1 = in2[1];
s2 = in2[2];
s3 = in2[3];
s4 = in2[4];
t[0] = ((uint128_t) r0) * s0;
t[1] = ((uint128_t) r0) * s1 + ((uint128_t) r1) * s0;
t[2] = ((uint128_t) r0) * s2 + ((uint128_t) r2) * s0 + ((uint128_t) r1) * s1;
t[3] = ((uint128_t) r0) * s3 + ((uint128_t) r3) * s0 + ((uint128_t) r1) * s2 + ((uint128_t) r2) * s1;
t[4] = ((uint128_t) r0) * s4 + ((uint128_t) r4) * s0 + ((uint128_t) r3) * s1 + ((uint128_t) r1) * s3 + ((uint128_t) r2) * s2;
r4 *= 19;
r1 *= 19;
r2 *= 19;
r3 *= 19;
t[0] += ((uint128_t) r4) * s1 + ((uint128_t) r1) * s4 + ((uint128_t) r2) * s3 + ((uint128_t) r3) * s2;
t[1] += ((uint128_t) r4) * s2 + ((uint128_t) r2) * s4 + ((uint128_t) r3) * s3;
t[2] += ((uint128_t) r4) * s3 + ((uint128_t) r3) * s4;
t[3] += ((uint128_t) r4) * s4;
r0 = (limb)t[0] & 0x7ffffffffffff; c = (limb)(t[0] >> 51);
t[1] += c; r1 = (limb)t[1] & 0x7ffffffffffff; c = (limb)(t[1] >> 51);
t[2] += c; r2 = (limb)t[2] & 0x7ffffffffffff; c = (limb)(t[2] >> 51);
t[3] += c; r3 = (limb)t[3] & 0x7ffffffffffff; c = (limb)(t[3] >> 51);
t[4] += c; r4 = (limb)t[4] & 0x7ffffffffffff; c = (limb)(t[4] >> 51);
r0 += c * 19; c = r0 >> 51; r0 = r0 & 0x7ffffffffffff;
r1 += c; c = r1 >> 51; r1 = r1 & 0x7ffffffffffff;
r2 += c;
output[0] = r0;
output[1] = r1;
output[2] = r2;
output[3] = r3;
output[4] = r4;
}

Thinking modified from image by ArmOkay from the Noun Project CC BY 3.0

The Overhead of Verification

• 10x—100x overhead

November 30, 2020 6

Lines of Code

CompCert

seL4

CertiKOS

Fiat Cryptography

5880

8700

6500

603

Lines of Verification

36,120

1,092,121

96,642

94,196

Automating Verification

November 30, 2020 7

𝑎 ⋅ 𝑏 mod 𝑝

p

Image modified from Thinking by ArmOkay from the Noun Project; script by Berkah Icon from the Noun Project; write by royyanandrian from the Noun Project

Mathematical Specifications 𝑎 ⋅ 𝑏 mod 𝑞 𝑎 ⋅ 𝑏 mod 𝑟

static inline void force_inline

fmul(felem output, const felem in2, const felem in) {

uint128_t t[5];
limb r0,r1,r2,r3,r4,s0,s1,s2,s3,s4,c;

r0 = in[0];
r1 = in[1];

r2 = in[2];

r3 = in[3];
r4 = in[4];

s0 = in2[0];
s1 = in2[1];

s2 = in2[2];

s3 = in2[3];
s4 = in2[4];

t[0] = ((uint128_t) r0) * s0;
t[1] = ((uint128_t) r0) * s1 + ((uint128_t) r1) * s0;

t[2] = ((uint128_t) r0) * s2 + ((uint128_t) r2) * s0 + ((uint128_t) r1) * s1;

t[3] = ((uint128_t) r0) * s3 + ((uint128_t) r3) * s0 + ((uint128_t) r1) * s2 + ((uint128_t) r2) * s1;
t[4] = ((uint128_t) r0) * s4 + ((uint128_t) r4) * s0 + ((uint128_t) r3) * s1 + ((uint128_t) r1) * s3 + ((uint128_t) r2) * s2;

r4 *= 19;
r1 *= 19;

r2 *= 19;

r3 *= 19;
t[0] += ((uint128_t) r4) * s1 + ((uint128_t) r1) * s4 + ((uint128_t) r2) * s3 + ((uint128_t) r3) * s2;

t[1] += ((uint128_t) r4) * s2 + ((uint128_t) r2) * s4 + ((uint128_t) r3) * s3;
t[2] += ((uint128_t) r4) * s3 + ((uint128_t) r3) * s4;

t[3] += ((uint128_t) r4) * s4;

r0 = (limb)t[0] & 0x7ffffffffffff; c = (limb)(t[0] >> 51);
t[1] += c; r1 = (limb)t[1] & 0x7ffffffffffff; c = (limb)(t[1] >> 51);

t[2] += c; r2 = (limb)t[2] & 0x7ffffffffffff; c = (limb)(t[2] >> 51);
t[3] += c; r3 = (limb)t[3] & 0x7ffffffffffff; c = (limb)(t[3] >> 51);

t[4] += c; r4 = (limb)t[4] & 0x7ffffffffffff; c = (limb)(t[4] >> 51);

r0 += c * 19; c = r0 >> 51; r0 = r0 & 0x7ffffffffffff;
r1 += c; c = r1 >> 51; r1 = r1 & 0x7ffffffffffff;

r2 += c;
output[0] = r0;

output[1] = r1;

output[2] = r2;
output[3] = r3;

output[4] = r4;
}

static inline void force_inline

fmul(felem output, const felem in2, const felem in) {

uint128_t t[5];
limb r0,r1,r2,r3,r4,s0,s1,s2,s3,s4,c;

r0 = in[0];
r1 = in[1];

r2 = in[2];

r3 = in[3];
r4 = in[4];

s0 = in2[0];
s1 = in2[1];

s2 = in2[2];

s3 = in2[3];
s4 = in2[4];

t[0] = ((uint128_t) r0) * s0;
t[1] = ((uint128_t) r0) * s1 + ((uint128_t) r1) * s0;

t[2] = ((uint128_t) r0) * s2 + ((uint128_t) r2) * s0 + ((uint128_t) r1) * s1;

t[3] = ((uint128_t) r0) * s3 + ((uint128_t) r3) * s0 + ((uint128_t) r1) * s2 + ((uint128_t) r2) * s1;
t[4] = ((uint128_t) r0) * s4 + ((uint128_t) r4) * s0 + ((uint128_t) r3) * s1 + ((uint128_t) r1) * s3 + ((uint128_t) r2) * s2;

r4 *= 19;
r1 *= 19;

r2 *= 19;

r3 *= 19;
t[0] += ((uint128_t) r4) * s1 + ((uint128_t) r1) * s4 + ((uint128_t) r2) * s3 + ((uint128_t) r3) * s2;

t[1] += ((uint128_t) r4) * s2 + ((uint128_t) r2) * s4 + ((uint128_t) r3) * s3;
t[2] += ((uint128_t) r4) * s3 + ((uint128_t) r3) * s4;

t[3] += ((uint128_t) r4) * s4;

r0 = (limb)t[0] & 0x7ffffffffffff; c = (limb)(t[0] >> 51);
t[1] += c; r1 = (limb)t[1] & 0x7ffffffffffff; c = (limb)(t[1] >> 51);

t[2] += c; r2 = (limb)t[2] & 0x7ffffffffffff; c = (limb)(t[2] >> 51);
t[3] += c; r3 = (limb)t[3] & 0x7ffffffffffff; c = (limb)(t[3] >> 51);

t[4] += c; r4 = (limb)t[4] & 0x7ffffffffffff; c = (limb)(t[4] >> 51);

r0 += c * 19; c = r0 >> 51; r0 = r0 & 0x7ffffffffffff;
r1 += c; c = r1 >> 51; r1 = r1 & 0x7ffffffffffff;

r2 += c;
output[0] = r0;

output[1] = r1;

output[2] = r2;
output[3] = r3;

output[4] = r4;
}

static inline void force_inline

fmul(felem output, const felem in2, const felem in) {
uint128_t t[5];

limb r0,r1,r2,r3,r4,s0,s1,s2,s3,s4,c;
r0 = in[0];

r1 = in[1];

r2 = in[2];
r3 = in[3];

r4 = in[4];
s0 = in2[0];

s1 = in2[1];

s2 = in2[2];
s3 = in2[3];

s4 = in2[4];
t[0] = ((uint128_t) r0) * s0;

t[1] = ((uint128_t) r0) * s1 + ((uint128_t) r1) * s0;

t[2] = ((uint128_t) r0) * s2 + ((uint128_t) r2) * s0 + ((uint128_t) r1) * s1;
t[3] = ((uint128_t) r0) * s3 + ((uint128_t) r3) * s0 + ((uint128_t) r1) * s2 + ((uint128_t) r2) * s1;

t[4] = ((uint128_t) r0) * s4 + ((uint128_t) r4) * s0 + ((uint128_t) r3) * s1 + ((uint128_t) r1) * s3 + ((uint128_t) r2) * s2;
r4 *= 19;

r1 *= 19;

r2 *= 19;
r3 *= 19;

t[0] += ((uint128_t) r4) * s1 + ((uint128_t) r1) * s4 + ((uint128_t) r2) * s3 + ((uint128_t) r3) * s2;
t[1] += ((uint128_t) r4) * s2 + ((uint128_t) r2) * s4 + ((uint128_t) r3) * s3;

t[2] += ((uint128_t) r4) * s3 + ((uint128_t) r3) * s4;

t[3] += ((uint128_t) r4) * s4;
r0 = (limb)t[0] & 0x7ffffffffffff; c = (limb)(t[0] >> 51);

t[1] += c; r1 = (limb)t[1] & 0x7ffffffffffff; c = (limb)(t[1] >> 51);
t[2] += c; r2 = (limb)t[2] & 0x7ffffffffffff; c = (limb)(t[2] >> 51);

t[3] += c; r3 = (limb)t[3] & 0x7ffffffffffff; c = (limb)(t[3] >> 51);

t[4] += c; r4 = (limb)t[4] & 0x7ffffffffffff; c = (limb)(t[4] >> 51);
r0 += c * 19; c = r0 >> 51; r0 = r0 & 0x7ffffffffffff;

r1 += c; c = r1 >> 51; r1 = r1 & 0x7ffffffffffff;
r2 += c;

output[0] = r0;

output[1] = r1;
output[2] = r2;

output[3] = r3;

output[4] = r4;
}

Generated Code + Proof q r

Our script is run and checked by…

• Dependently typed, interactive, tactic-driven proof assistants

• Dependently typed proof assistants are expressive

• Interactivity allows easy insertion of human ingenuity

• Tactics allow automation

November 30, 2020 8
Coq logo from https://calebstanford.com/2019/01/15/coq-vector-image/

The Big Problem in Automating Verification

• Asymptotic performance

• We can automate verification of toy examples in the proof engine

• BUT this automation takes way too long on real examples

• My work has been fixing this performance problem

November 30, 2020 9

y = 0.0002e2.4508x

R² = 0.9985

0

200000

400000

600000

800000

1000000

0 2 4 6 8 10 12 14 16 18

ti
m

e
(s

)

limbs (machine integers per big integer)

The Potential of Automating Verification

Fiat Cryptography:

November 30, 2020 10

94,196

188,365

Original Lines of Code Lines of Verification Lines of Generated Code

It’s really easy to use!

November 30, 2020 11

It’s really easy to use!

November 30, 2020 12

Requirements

1. Code we generate must be fast and constant time

Justification: server load, security

2. Easy to add and prove new algorithm, prime, architecture, …

Justification: scalability of human effort, edit-compile-debug loops

3. Verification should not run forever

Justification: usability

November 30, 2020 13

Where was the asymptotic performance issue?

November 30, 2020 14

Fiat Cryptography Pieces

November 30, 2020 15

Associational

Positional

Columns

Rows

Montgomery

Base
Conversion

Barrett

Freeze

Partial
Evaluation

Bounds
Analysis

Associational

Positional

Columns

Rows

Montgomery

Base
Conversion

Barrett

Freeze

Partial Evaluation

Bounds Analysis

Associational

Positional

Columns

Rows

Montgomery

Base
Conversion

Barrett

Freeze

Partial Evaluation

Bounds Analysis

Verification Time: 1 limb

November 30, 2020 16

Associational

Positional

Columns

Rows

Montgomery

Base
Conversion

Barrett

Freeze

Partial Evaluation

Bounds Analysis

November 30, 2020 17

Associational

Positional

Columns

Rows

Montgomery

Base
Conversion

Barrett

Freeze

Partial Evaluation

Bounds Analysis

Verification Time: 1 limb

November 30, 2020 18

Associational

Positional

Columns

Rows

Montgomery

Base
Conversion

Barrett

Freeze

Partial Evaluation

Bounds Analysis

Verification Time: 2 limbs

November 30, 2020 19

Associational

Positional

Columns

Rows

Montgomery

Base
Conversion

Barrett

Freeze

Partial EvaluationBounds
Analysis

Verification Time: 3 limbs

What is Partial Evaluation?

November 30, 2020 20
Peanut Butter modified from image by P Thanga Vignesh from the Noun Project CC BY 3.0; Jam modified from image by Nikita Kozin from the Noun Project CC BY

3.0; Bread modified from image by Joanna Giansanti from the Noun Project CC BY 3.0; Sandwich bag by Kate Maldjian from the Noun Project; Shelves by Lluisa
Iborra from the Noun Project; Refrigerator by shashank singh from the Noun Project

Fetch from

Fetch from

Fetch from

for

for

for

Partial
Evaluation

What is Partial Evaluation?

November 30, 2020 21

Partial
Evaluation𝑥 + 2 + 𝑦 − 𝑥 + 6 𝑦 + 8

Partial Evaluation in Fiat Cryptography

November 30, 2020 22

Template Code:
Definition mul (p q:list (Z*Z)):list (Z*Z) :=
flat_map (fun '(w, t) =>
map (fun '(w', t') =>

(w * w', t * t’))
q) p.

Fixpoint square (p:list (Z*Z)):list (Z*Z)
:= match p with

| [] => []
| (w, t) :: ts

=> let two_t := 2 * t in
((w * w, t * t)
:: map (λ '(w', t'), (w * w', two_t * t')) ts)

++ square ts
end.

Definition split (s:Z) (p:list(Z*Z)):list (Z*Z) * list (Z*Z)
:= let '(hi, lo) := partition (fun '(w, _) => w mod s =? 0) p in

(lo, map (fun '(w, t) => (w / s, t)) hi).
Definition reduce (s:Z) (c:list (Z*Z)) (p:list (Z*Z)):list (Z*Z)
:= let '(lo, hi) := split s p in lo ++ mul c hi.

static void
fiat_25519_carry_square(uint64_t
out1[5], const uint64_t arg1[5])
{
uint64_t x1;
uint64_t x2;
uint64_t x3;
uint64_t x4;
uint64_t x5;
uint64_t x6;
uint64_t x7;
uint64_t x8;
fiat_25519_uint128 x9;
fiat_25519_uint128 x10;
fiat_25519_uint128 x11;
fiat_25519_uint128 x12;
fiat_25519_uint128 x13;
fiat_25519_uint128 x14;
fiat_25519_uint128 x15;
fiat_25519_uint128 x16;
fiat_25519_uint128 x17;
fiat_25519_uint128 x18;
fiat_25519_uint128 x19;
fiat_25519_uint128 x20;
fiat_25519_uint128 x21;
fiat_25519_uint128 x22;
fiat_25519_uint128 x23;
fiat_25519_uint128 x24;
uint64_t x25;
uint64_t x26;

fiat_25519_uint128 x27;
fiat_25519_uint128 x28;
fiat_25519_uint128 x29;
fiat_25519_uint128 x30;
fiat_25519_uint128 x31;
uint64_t x32;
uint64_t x33;
fiat_25519_uint128 x34;
uint64_t x35;
uint64_t x36;
fiat_25519_uint128 x37;
uint64_t x38;
uint64_t x39;
fiat_25519_uint128 x40;
uint64_t x41;
uint64_t x42;
uint64_t x43;
uint64_t x44;
uint64_t x45;
uint64_t x46;
uint64_t x47;
fiat_25519_uint1 x48;
uint64_t x49;
uint64_t x50;
x1 = ((arg1[4]) *
UINT8_C(0x13));
x2 = (x1 * 0x2);
x3 = ((arg1[4]) * 0x2);
x4 = ((arg1[3]) *
UINT8_C(0x13));

x5 = (x4 * 0x2);
x6 = ((arg1[3]) * 0x2);
x7 = ((arg1[2]) * 0x2);
x8 = ((arg1[1]) * 0x2);
x9 =
((fiat_25519_uint128)(arg1[4]) *
x1);
x10 =
((fiat_25519_uint128)(arg1[3]) *
x2);
x11 =
((fiat_25519_uint128)(arg1[3]) *
x4);
x12 =
((fiat_25519_uint128)(arg1[2]) *
x2);
x13 =
((fiat_25519_uint128)(arg1[2]) *
x5);
x14 =
((fiat_25519_uint128)(arg1[2]) *
(arg1[2]));
x15 =
((fiat_25519_uint128)(arg1[1]) *
x2);
x16 =
((fiat_25519_uint128)(arg1[1]) *
x6);
x17 =
((fiat_25519_uint128)(arg1[1]) *

x7);
x18 =
((fiat_25519_uint128)(arg1[1]) *
(arg1[1]));
x19 =
((fiat_25519_uint128)(arg1[0]) *
x3);
x20 =
((fiat_25519_uint128)(arg1[0]) *
x6);
x21 =
((fiat_25519_uint128)(arg1[0]) *
x7);
x22 =
((fiat_25519_uint128)(arg1[0]) *
x8);
x23 =
((fiat_25519_uint128)(arg1[0]) *
(arg1[0]));
x24 = (x23 + (x15 + x13));
x25 = (uint64_t)(x24 >> 51);
x26 = (uint64_t)(x24 &
UINT64_C(0x7ffffffffffff));
x27 = (x19 + (x16 + x14));
x28 = (x20 + (x17 + x9));
x29 = (x21 + (x18 + x10));
x30 = (x22 + (x12 + x11));
x31 = (x25 + x30);
x32 = (uint64_t)(x31 >> 51);
x33 = (uint64_t)(x31 &

UINT64_C(0x7ffffffffffff));
x34 = (x32 + x29);
x35 = (uint64_t)(x34 >> 51);
x36 = (uint64_t)(x34 &
UINT64_C(0x7ffffffffffff));
x37 = (x35 + x28);
x38 = (uint64_t)(x37 >> 51);
x39 = (uint64_t)(x37 &
UINT64_C(0x7ffffffffffff));
x40 = (x38 + x27);
x41 = (uint64_t)(x40 >> 51);
x42 = (uint64_t)(x40 &
UINT64_C(0x7ffffffffffff));
x43 = (x41 * UINT8_C(0x13));
x44 = (x26 + x43);
x45 = (x44 >> 51);
x46 = (x44 &
UINT64_C(0x7ffffffffffff));
x47 = (x45 + x33);
x48 = (fiat_25519_uint1)(x47 >>
51);
x49 = (x47 &
UINT64_C(0x7ffffffffffff));
x50 = (x48 + x36);
out1[0] = x46;
out1[1] = x49;
out1[2] = x50;
out1[3] = x39;
out1[4] = x42;
}

static void fiat_25519_carry_square(uint32_t
out1[10], const uint32_t arg1[10]) {
uint32_t x1;
uint32_t x2;
uint32_t x3;
uint32_t x4;
uint64_t x5;
uint32_t x6;
uint32_t x7;
uint32_t x8;
uint32_t x9;
uint32_t x10;
uint64_t x11;
uint32_t x12;
uint32_t x13;
uint32_t x14;
uint32_t x15;
uint32_t x16;
uint32_t x17;
uint32_t x18;
uint64_t x19;
uint64_t x20;
uint64_t x21;
uint64_t x22;
uint64_t x23;
uint64_t x24;
uint64_t x25;
uint64_t x26;
uint64_t x27;
uint64_t x28;
uint64_t x29;
uint64_t x30;
uint64_t x31;
uint64_t x32;
uint64_t x33;
uint64_t x34;
uint64_t x35;
uint64_t x36;
uint64_t x37;
uint64_t x38;
uint64_t x39;
uint64_t x40;
uint64_t x41;
uint64_t x42;
uint64_t x43;
uint64_t x44;
uint64_t x45;
uint64_t x46;
uint64_t x47;
uint64_t x48;
uint64_t x49;
uint64_t x50;
uint64_t x51;
uint64_t x52;

uint64_t x53;
uint64_t x54;
uint64_t x55;
uint64_t x56;
uint64_t x57;
uint64_t x58;
uint64_t x59;
uint64_t x60;
uint64_t x61;
uint64_t x62;
uint64_t x63;
uint64_t x64;
uint64_t x65;
uint64_t x66;
uint64_t x67;
uint64_t x68;
uint64_t x69;
uint64_t x70;
uint64_t x71;
uint64_t x72;
uint64_t x73;
uint64_t x74;
uint64_t x75;
uint32_t x76;
uint64_t x77;
uint64_t x78;
uint64_t x79;
uint64_t x80;
uint64_t x81;
uint64_t x82;
uint64_t x83;
uint64_t x84;
uint64_t x85;
uint64_t x86;
uint64_t x87;
uint32_t x88;
uint64_t x89;
uint64_t x90;
uint32_t x91;
uint64_t x92;
uint64_t x93;
uint32_t x94;
uint64_t x95;
uint64_t x96;
uint32_t x97;
uint64_t x98;
uint64_t x99;
uint32_t x100;
uint64_t x101;
uint64_t x102;
uint32_t x103;
uint64_t x104;
uint64_t x105;
uint32_t x106;

uint64_t x107;
uint64_t x108;
uint32_t x109;
uint64_t x110;
uint64_t x111;
uint32_t x112;
uint64_t x113;
uint64_t x114;
uint32_t x115;
uint32_t x116;
uint32_t x117;
fiat_25519_uint1 x118;
uint32_t x119;
uint32_t x120;
x1 = ((arg1[9]) * UINT8_C(0x13));
x2 = (x1 * 0x2);
x3 = ((arg1[9]) * 0x2);
x4 = ((arg1[8]) * UINT8_C(0x13));
x5 = ((uint64_t)x4 * 0x2);
x6 = ((arg1[8]) * 0x2);
x7 = ((arg1[7]) * UINT8_C(0x13));
x8 = (x7 * 0x2);
x9 = ((arg1[7]) * 0x2);
x10 = ((arg1[6]) * UINT8_C(0x13));
x11 = ((uint64_t)x10 * 0x2);
x12 = ((arg1[6]) * 0x2);
x13 = ((arg1[5]) * UINT8_C(0x13));
x14 = ((arg1[5]) * 0x2);
x15 = ((arg1[4]) * 0x2);
x16 = ((arg1[3]) * 0x2);
x17 = ((arg1[2]) * 0x2);
x18 = ((arg1[1]) * 0x2);
x19 = ((uint64_t)(arg1[9]) * (x1 * 0x2));
x20 = ((uint64_t)(arg1[8]) * x2);
x21 = ((uint64_t)(arg1[8]) * x4);
x22 = ((arg1[7]) * ((uint64_t)x2 * 0x2));
x23 = ((arg1[7]) * x5);
x24 = ((uint64_t)(arg1[7]) * (x7 * 0x2));
x25 = ((uint64_t)(arg1[6]) * x2);
x26 = ((arg1[6]) * x5);
x27 = ((uint64_t)(arg1[6]) * x8);
x28 = ((uint64_t)(arg1[6]) * x10);
x29 = ((arg1[5]) * ((uint64_t)x2 * 0x2));
x30 = ((arg1[5]) * x5);
x31 = ((arg1[5]) * ((uint64_t)x8 * 0x2));
x32 = ((arg1[5]) * x11);
x33 = ((uint64_t)(arg1[5]) * (x13 * 0x2));
x34 = ((uint64_t)(arg1[4]) * x2);
x35 = ((arg1[4]) * x5);
x36 = ((uint64_t)(arg1[4]) * x8);
x37 = ((arg1[4]) * x11);
x38 = ((uint64_t)(arg1[4]) * x14);
x39 = ((uint64_t)(arg1[4]) * (arg1[4]));
x40 = ((arg1[3]) * ((uint64_t)x2 * 0x2));

x41 = ((arg1[3]) * x5);
x42 = ((arg1[3]) * ((uint64_t)x8 * 0x2));
x43 = ((uint64_t)(arg1[3]) * x12);
x44 = ((uint64_t)(arg1[3]) * (x14 * 0x2));
x45 = ((uint64_t)(arg1[3]) * x15);
x46 = ((uint64_t)(arg1[3]) * ((arg1[3]) *
0x2));
x47 = ((uint64_t)(arg1[2]) * x2);
x48 = ((arg1[2]) * x5);
x49 = ((uint64_t)(arg1[2]) * x9);
x50 = ((uint64_t)(arg1[2]) * x12);
x51 = ((uint64_t)(arg1[2]) * x14);
x52 = ((uint64_t)(arg1[2]) * x15);
x53 = ((uint64_t)(arg1[2]) * x16);
x54 = ((uint64_t)(arg1[2]) * (arg1[2]));
x55 = ((arg1[1]) * ((uint64_t)x2 * 0x2));
x56 = ((uint64_t)(arg1[1]) * x6);
x57 = ((uint64_t)(arg1[1]) * (x9 * 0x2));
x58 = ((uint64_t)(arg1[1]) * x12);
x59 = ((uint64_t)(arg1[1]) * (x14 * 0x2));
x60 = ((uint64_t)(arg1[1]) * x15);
x61 = ((uint64_t)(arg1[1]) * (x16 * 0x2));
x62 = ((uint64_t)(arg1[1]) * x17);
x63 = ((uint64_t)(arg1[1]) * ((arg1[1]) *
0x2));
x64 = ((uint64_t)(arg1[0]) * x3);
x65 = ((uint64_t)(arg1[0]) * x6);
x66 = ((uint64_t)(arg1[0]) * x9);
x67 = ((uint64_t)(arg1[0]) * x12);
x68 = ((uint64_t)(arg1[0]) * x14);
x69 = ((uint64_t)(arg1[0]) * x15);
x70 = ((uint64_t)(arg1[0]) * x16);
x71 = ((uint64_t)(arg1[0]) * x17);
x72 = ((uint64_t)(arg1[0]) * x18);
x73 = ((uint64_t)(arg1[0]) * (arg1[0]));
x74 = (x73 + (x55 + (x48 + (x42 + (x37 +
x33)))));
x75 = (x74 >> 26);
x76 = (uint32_t)(x74 & UINT32_C(0x3ffffff));
x77 = (x64 + (x56 + (x49 + (x43 + x38))));
x78 = (x65 + (x57 + (x50 + (x44 + (x39 +
x19)))));
x79 = (x66 + (x58 + (x51 + (x45 + x20))));
x80 = (x67 + (x59 + (x52 + (x46 + (x22 +
x21)))));
x81 = (x68 + (x60 + (x53 + (x25 + x23))));
x82 = (x69 + (x61 + (x54 + (x29 + (x26 +
x24)))));
x83 = (x70 + (x62 + (x34 + (x30 + x27))));
x84 = (x71 + (x63 + (x40 + (x35 + (x31 +
x28)))));
x85 = (x72 + (x47 + (x41 + (x36 + x32))));
x86 = (x75 + x85);
x87 = (x86 >> 25);

x88 = (uint32_t)(x86 & UINT32_C(0x1ffffff));
x89 = (x87 + x84);
x90 = (x89 >> 26);
x91 = (uint32_t)(x89 & UINT32_C(0x3ffffff));
x92 = (x90 + x83);
x93 = (x92 >> 25);
x94 = (uint32_t)(x92 & UINT32_C(0x1ffffff));
x95 = (x93 + x82);
x96 = (x95 >> 26);
x97 = (uint32_t)(x95 & UINT32_C(0x3ffffff));
x98 = (x96 + x81);
x99 = (x98 >> 25);
x100 = (uint32_t)(x98 &
UINT32_C(0x1ffffff));
x101 = (x99 + x80);
x102 = (x101 >> 26);
x103 = (uint32_t)(x101 &
UINT32_C(0x3ffffff));
x104 = (x102 + x79);
x105 = (x104 >> 25);
x106 = (uint32_t)(x104 &
UINT32_C(0x1ffffff));
x107 = (x105 + x78);
x108 = (x107 >> 26);
x109 = (uint32_t)(x107 &
UINT32_C(0x3ffffff));
x110 = (x108 + x77);
x111 = (x110 >> 25);
x112 = (uint32_t)(x110 &
UINT32_C(0x1ffffff));
x113 = (x111 * UINT8_C(0x13));
x114 = (x76 + x113);
x115 = (uint32_t)(x114 >> 26);
x116 = (uint32_t)(x114 &
UINT32_C(0x3ffffff));
x117 = (x115 + x88);
x118 = (fiat_25519_uint1)(x117 >> 25);
x119 = (x117 & UINT32_C(0x1ffffff));
x120 = (x118 + x91);
out1[0] = x116;
out1[1] = x119;
out1[2] = x120;
out1[3] = x94;
out1[4] = x97;
out1[5] = x100;
out1[6] = x103;
out1[7] = x106;
out1[8] = x109;
out1[9] = x112;
}

32-bit square

64-bit square

Partial Evaluation is slow

November 30, 2020 23

0

10

20

30

40

50

60

0 100 200 300 400

ti
m

e
(s

)

binders (also = # rewrites)

rewrite_strat topdown

rewrite_strat bottomup

repeat setoid_rewrite
binders for:
Curve25519: 90 (x64) or 188 (x32)
P-256: 150 (x64) or 400 (x32)
P-384: 300 (x64) or 916 (x32)

What is a proof engine?

• Declare a goal to prove

• Issue instructions to make partial progress on proving

• Can write scripts to automate issuing of instructions

• Tracks the progress and current state

• Can issue a trail (proof certificate) to be checked by a small checker
(“kernel”)

November 30, 2020 24

Our Approach

• Dig deep to find the places of asymptotic blowup

• Understand the precise source of the blowup

• Fuse the different compiler passes deeply

November 30, 2020 25

Requirements for Partial Evaluation

• β-reduction

• ιδ-reduction + rewrites

• code sharing preservation

November 30, 2020 26

β-reduction

• Useful for eliminating function call overhead in the generated code,
which is important for output code performance

• Example: ((λ x. x + 5) 2) ⇝ 2 + 5

November 30, 2020 27

ιδ-reduction + rewrites

• Useful for precomputation and eliminating function call overhead

• Arithmetic simplification necessary for getting right asymptotics of
generated lines of code in fiat-crypto (quadratic vs. quartic)

• Example:
map (λ x. x + 5) [0; 1; z] ⇝ [(λ x. x + 5) 0; (λ x. x + 5) 1; (λ x. x + 5) z]
• Note that this leaves β redexes

• Without β-reduction, this can blow up code size

• Fusing rewriting with β-reduction in a way that scales

November 30, 2020 28

Code Sharing Preservation

• Necessary for avoiding exponential blowup in generated code size

• Example:
map f (let y := x + x in let z := y + y in [z; z; z])
⇝ let y := x + x in let z := y + y in map f [z; z; z]
⇝ let y := x + x in let z := y + y in [f z; f z; f z]

• Fusing this with β- and ι- reduction

November 30, 2020 29

Compiler passes

• β-reduction
• eliminating function call overhead

• ιδ-reduction + rewrites
• inlining definitions to eliminate function call overhead

• arithmetic simplification

• code sharing preservation
• to avoid exponential blowup in code size

November 30, 2020 30

Extra Requirements

• Verified
• Without extending the TCB

• Performant
• Should not introduce extra super-linear factors

November 30, 2020 31

The compiler passes need to be fused

• Needed to achieve adequate asymptotic performance!

• Separating out rewriting results in quartic rather than quadratic loc

• Separating out ι-reduction (constant propagation) results in enormous
code-size blowup

• Separating out code-sharing-preservation results in enormous code-
size blowup

November 30, 2020 32

Implementation

• Reflective for performant and verified

• Normalization by Evaluation (NbE) (for β)

+ let-lifting monad (code-sharing)

+ rewriting (ιδ+rewrite)

November 30, 2020 33

Proof by Reflection

• Most steps in the proof engine make partial progress towards a goal
and leave behind a trail

• Coq’s proof engine has a highly optimized primitive step for validating
the output of a computation

• Phrasing the goal so that we can just validate the output of a
computation
• Verifying the process, rather than having an ad-hoc process that leaves

behind a trail verifying the output

November 30, 2020 34

Non-Reflection Example

Inductive is_even:ℕ→ℙ := |zero_even : is_even 0 |two_plus_even n : is_even n → is_even (2+n).

November 30, 2020 35Thinking modified from image by ArmOkay from the Noun Project CC BY 3.0; Coq logo from https://calebstanford.com/2019/01/15/coq-vector-image/
script by Berkah Icon from the Noun Project; write by royyanandrian from the Noun Project

Goal is_even 9002. Goal is:
is_even 9002

repeat constructor
Current Proof is:

two_plus_even 9000
(two_plus_even 8998
(two_plus_even 8996
(two_plus_even 8994 …

Qed

✔

Reflection Example: Up-Front Work

Inductive is_even:ℕ→ℙ := |zero_even : is_even 0 |two_plus_even n : is_even n → is_even (2+n).

November 30, 2020 36
Thinking modified from image by ArmOkay from the Noun Project CC BY 3.0; Coq logo from https://calebstanford.com/2019/01/15/coq-vector-image/

Inductive parity := even | odd.

Definition flip_parity p
:= match p with even => odd | odd => even end.

Fixpoint parity_of (n : nat) : parity :=
match n with
| O => even
| S n' => flip_parity (parity_of n') end.

✔

✔

✔
Lemma parity_of_correct
: ∀ n, parity_of n = even → is_even n.
Proof.

intro n; assert (H' : match parity_of n with
| even => is_even n
| odd => is_even (S n) end).

{ induction n as [|n IH]; cbn; try constructor.
destruct (parity_of n); cbn; try constructor; try assumption. }

intro H; rewrite H in H'; assumption.

Qed. ✔

Reflection Example

Inductive is_even:ℕ→ℙ := |zero_even : is_even 0 |two_plus_even n : is_even n → is_even (2+n).

November 30, 2020 37Thinking modified from image by ArmOkay from the Noun Project CC BY 3.0
Coq logo from https://calebstanford.com/2019/01/15/coq-vector-image/

Goal is_even 9002. Goal is:
is_even 9002

apply parity_of_correct
Goal is:

parity_of 9002 = even

Qed

✔

vm_compute; reflexivity. Current Proof is:
parity_of_correct 9002
(eq_refl even)

Inductive parity := even | odd.
Fixpoint parity_of : ℕ → parity

Lemma parity_of_correct
: ∀ n, parity_of n = even → is_even n.

Why reflective rewriting?

• Reflective rewriting is asymptotically faster

• The trail left by proof-engine-based rewriting is super-linear in the
size of the code being transformed

• Tracking the goal incurs super-linear overhead in the number of
binders

• Recursively computing only the output is asymptotically faster

• Side benefit: we can extract it to OCaml to run as a nifty command-
line utility

November 30, 2020 38

Normalization by Evaluation

Goal: Reuse substitution in Gallina for substitution in ASTs

Example: Turn “(λ z p n x. z + (x + (p + n))) 0 1 (-1)” into

(λ z p n x. (λ a b. rewrite(“+”, a, b))
z ((λ a b. rewrite(“+”, a, b))

x ((λ a b. rewrite(“+”, a, b))
p n)))) (rewrite(“0”)) (rewrite(“1”)) (rewrite(“-1”))

Expression application ⇝ Gallina application

Expression abstraction ⇝ Gallina abstraction
Expression constants ⇝ rewriter invocations on η-expanded forms

November 30, 2020 39

Normalization by Evaluation

Goal: Reuse substitution in Gallina for substitution in ASTs

Example: Turn “(λ z p n x. z + (x + (p + n))) 0 1 (-1)” into

(λ z p n x. (λ a b. rewrite(“+”, a, b))
z ((λ a b. rewrite(“+”, a, b))

x ((λ a b. rewrite(“+”, a, b))
p n)))) (rewrite(“0”)) (rewrite(“1”)) (rewrite(“-1”))

Then reduce!

November 30, 2020 40

Normalization by Evaluation

Goal: Reuse substitution in Gallina for substitution in ASTs

Example: Turn “(λ z p n x. z + (x + (p + n))) 0 1 (-1)” into

(λ z p n x. (λ a b. rewrite(“+”, a, b))
z ((λ a b. rewrite(“+”, a, b))

x ((λ a b. rewrite(“+”, a, b))
p n)))) (rewrite(“0”)) (rewrite(“1”)) (rewrite(“-1”))

Then reduce!

⇝ (λ x. rewrite(“+”, “0”, rewrite(“+”, “x”, rewrite(“+”, “1”, “-1”))))

November 30, 2020 41

Let-Lifting

• Let-Lifting monad for code-sharing-preservation
• Assignment + return; bind is derived
• Rewrote NbE in this Let-Lifting monad
• Haven’t seen it in the literature, but it’s not too tricky
• Automatic ι-reduction was too tricky to figure out, so I hard-coded

the cases we needed for fiat-crypto

November 30, 2020 42

Rewriting

• For ιδ+rewrite
• Using Parametric Higher-Order Abstract Syntax (PHOAS) to deal with

binders allows delaying rewriting
• We thus achieve complete rewriting in a single pass when the rewrite

rules form a DAG
• We have extra magic for when they don’t. The magic is called “fuel” and “try

again”.

November 30, 2020 43

More Features

• Select rewrite rule based on Coq’s pattern matching so we don’t need
to walk the entire list of rewrite rules at every identifier/constant
node just to see which ones apply

• On-the-fly emission of a type of codes for relevant constants
• Partial evaluation on the generated rewriter (further 2x efficiency)

November 30, 2020 44

Implementation

• Reflective for performant and verified

• Normalization by Evaluation (NbE) (for β)

+ let-lifting monad (code-sharing)

+ rewriting (ιδ+rewrite)

+ more features

November 30, 2020 45

Evaluation

• It works!

• It's performant!

November 30, 2020 46

Performance

November 30, 2020 47

0

10

20

30

40

50

60

0 2000 4000 6000

ti
m

e
(s

)

binders (also = # rewrites)

rewrite_strat topdown

rewrite_strat bottomup

repeat setoid_rewrite

Our approach

Poly. (Our approach)# binders for:
Curve25519: 90 (x64) or 188 (x32)
P-256: 150 (x64) or 400 (x32)
P-384: 300 (x64) or 916 (x32)

Performance on Fiat Cryptography

November 30, 2020 48

Our Approach

• Dig deep to find the places of asymptotic blowup

• Understand the precise source of the blowup

• Fuse the different compiler passes deeply

November 30, 2020 49

Takeaways

• Opportunity: Automate Verification to Enable Innovation

• Big Problem: Asymptotic Performance

• My Contribution: Reflective Partial Evaluation

• Important Next Steps

November 30, 2020 57

Let’s take a step back

• We succeeded, but this was very hard

• All of this to work around inadequate asymptotic performance of the
proof engine

• This is typical!

November 30, 2020 58

What I did in my PhD

80%

15%

4%

1%Time Spent
Performance engineering
(working around slowness in Coq)

Coding new things

Misc

Discovering interesting new things

59November 30, 2020

Our current approach to performance

• Using abstraction to prevent excessive unfolding

• Carving out the proof engine…

• …and replacing it with reflection

November 30, 2020 60

Abstraction is not enough

• Systems code is often written in an adversarial context

• Symmetric crypto code is often written empirically

• Performant code breaks abstraction barriers

November 30, 2020 61

Reflection will not save us

• Using a proof assistant is for easily inserting human ingenuity to prove
a broad range of things

• Using reflection is essentially giving up “easy” part

• As problems get bigger and harder and we need more ingenuity, it
won’t be cost-effective to do it reflectively

• Already in the partial evaluator I hit the same performance-scaling
issues that I was trying to avoid by writing it in the first place (albeit at
a smaller and surmountable scale)

November 30, 2020 62

Can we avoid carving out the proof engine?

• Where is the performance issue?

• Turns out that it’s pretty far from the problem we’re solving
• (This should be obvious, because if it wasn’t, reflection wouldn’t help.)

• Example: evar instance allocation has nothing to do with correctness of a
given C algorithm

• In my experience, it’s not about generating a proof trail and it’s not
even really about individual steps being slow
• It’s about asymptotics of accessing and updating data being tracked

• Sometimes just walking the term repeatedly is too much overhead

November 30, 2020 63

Not just an engineering challenge

• “Don’t make stupid choices” isn’t enough to get good asymptotic
performance

• Try writing rewrite_strat
• inside the tactic engine

• every step considered as progress towards proving something

• linear in # of binders + # of rewrite locations + size of term

• really hard, maybe impossible!

• We need to systematically study proof engines with an eye towards
asymptotic performance!

November 30, 2020 64

Next Questions about Proof Engines

• Where does the performance overhead really come from?

• What things are people not currently doing due to performance
overhead?

• What is an adequate set of primitives?

• What are acceptable thresholds on asymptotic behavior?

• Is it possible to achieve adequate performance simultaneously on all
the primitives?

November 30, 2020 65

My hope

I think solving this problem—getting the basics of proof engines right,
asymptotically—will drastically accelerate the scale of what we as a
field can handle, and bring verification closer to its promise and
potential of enabling innovation in industry.

November 30, 2020 66

Thank you for your time and
attention!

Questions?

November 30, 2020 67

